Comparison of EEG signal preprocessing methods for SSVEP recognition

M. Kołodziej, A. Majkowski, L. Oskwarek, R. Rak
{"title":"Comparison of EEG signal preprocessing methods for SSVEP recognition","authors":"M. Kołodziej, A. Majkowski, L. Oskwarek, R. Rak","doi":"10.1109/TSP.2016.7760893","DOIUrl":null,"url":null,"abstract":"This study was carried out to select EEG signal preprocessing methods to effectively detect and classify Steady State Visually Evoked Potentials (SSVEP). Algorithms, such as: Common Average Reference, Independent Component Analysis (in the task of electrooculography artifacts removing and SSVEP enhancement) and combinations of them were implemented and tested. The best classification accuracy improvement was obtained for CAR and ICA-SSVEP preprocessing methods. Experiments showed high usefulness of these methods in the context of SSVEP detection.","PeriodicalId":159773,"journal":{"name":"2016 39th International Conference on Telecommunications and Signal Processing (TSP)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 39th International Conference on Telecommunications and Signal Processing (TSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSP.2016.7760893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This study was carried out to select EEG signal preprocessing methods to effectively detect and classify Steady State Visually Evoked Potentials (SSVEP). Algorithms, such as: Common Average Reference, Independent Component Analysis (in the task of electrooculography artifacts removing and SSVEP enhancement) and combinations of them were implemented and tested. The best classification accuracy improvement was obtained for CAR and ICA-SSVEP preprocessing methods. Experiments showed high usefulness of these methods in the context of SSVEP detection.
脑电信号预处理方法在SSVEP识别中的比较
本研究选择脑电信号预处理方法,对稳态视觉诱发电位(SSVEP)进行有效检测和分类。实现并测试了诸如:共同平均参考、独立分量分析(在眼电成像伪影去除和SSVEP增强任务中)及其组合等算法。CAR和ICA-SSVEP预处理方法的分类精度提高幅度最大。实验表明,这些方法在SSVEP检测中具有较高的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信