Dynamic scene analysis based on the topic model

Yawen Fan, Shibao Zheng
{"title":"Dynamic scene analysis based on the topic model","authors":"Yawen Fan, Shibao Zheng","doi":"10.1109/IMSNA.2013.6743309","DOIUrl":null,"url":null,"abstract":"In this paper, a framework based on the topic model is proposed for dynamic scene analysis. Firstly, low-level motion features are detected and denoised. The residual low level feature is then mapped into visual words using a novel adaptive quantization method. The first level latent Dirichlet allocation(LDA) model is applied to automatically cluster visual words into atomic activities. Afterwards, the second level latent Dirichlet allocation model is used to cluster atom activity into interactions. Therefore video clips are represented as a mixture of interactions. The results of the real world traffic datasets demonstrate the effectiveness of the proposed method.","PeriodicalId":111582,"journal":{"name":"2013 2nd International Symposium on Instrumentation and Measurement, Sensor Network and Automation (IMSNA)","volume":"2001 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 2nd International Symposium on Instrumentation and Measurement, Sensor Network and Automation (IMSNA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMSNA.2013.6743309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, a framework based on the topic model is proposed for dynamic scene analysis. Firstly, low-level motion features are detected and denoised. The residual low level feature is then mapped into visual words using a novel adaptive quantization method. The first level latent Dirichlet allocation(LDA) model is applied to automatically cluster visual words into atomic activities. Afterwards, the second level latent Dirichlet allocation model is used to cluster atom activity into interactions. Therefore video clips are represented as a mixture of interactions. The results of the real world traffic datasets demonstrate the effectiveness of the proposed method.
基于主题模型的动态场景分析
本文提出了一种基于主题模型的动态场景分析框架。首先,检测底层运动特征并去噪;然后使用一种新的自适应量化方法将残差低电平特征映射到视觉词中。采用一级潜狄利克雷分配(LDA)模型自动将视觉词聚类到原子活动中。然后,使用二级潜狄利克雷分配模型将原子活动聚类到相互作用中。因此,视频片段被表示为交互的混合物。实际交通数据集的结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信