{"title":"Angular distribution of hydrogen fragment ions in H + -H 2 collisions","authors":"B. Siegmann, R. Hippler","doi":"10.1071/PH99021","DOIUrl":null,"url":null,"abstract":"The angular distribution of H+ fragment ions produced in 5–25 keV H+–H2 collisions was investigated in coincidence with Lyman-α photons. The observed photons arise from electron capture to the projectile H(2p) state and/or from the fragmentation of the H2 molecule via 2sσg, 2pσu or 2pΠ u states of the excited H+2* ion. An analysis of the measured angular distributions has been performed to distinguish the separate degenerate channels available to an emitted Lyman-α photon. The results show similarities to the data of Lindsay et al. (1987) who measured the non-coincident angular distribution of H+ fragment ions within the same energy range.","PeriodicalId":170873,"journal":{"name":"Australian Journal of Physics","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1071/PH99021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The angular distribution of H+ fragment ions produced in 5–25 keV H+–H2 collisions was investigated in coincidence with Lyman-α photons. The observed photons arise from electron capture to the projectile H(2p) state and/or from the fragmentation of the H2 molecule via 2sσg, 2pσu or 2pΠ u states of the excited H+2* ion. An analysis of the measured angular distributions has been performed to distinguish the separate degenerate channels available to an emitted Lyman-α photon. The results show similarities to the data of Lindsay et al. (1987) who measured the non-coincident angular distribution of H+ fragment ions within the same energy range.