W. Suparta, M. Abdullah, M. Ali, B. Yatim, N. Sato, A. Kadokura, G. Bjornsson, G. Fraser
{"title":"Solar-terrestrial observations at bipolar conjugate points using global positioning system","authors":"W. Suparta, M. Abdullah, M. Ali, B. Yatim, N. Sato, A. Kadokura, G. Bjornsson, G. Fraser","doi":"10.1109/ICICI-BME.2009.5417302","DOIUrl":null,"url":null,"abstract":"GPS technique is an essential tool to explore of the near-Earth space environment towards improved space weather prediction and such methods provide suitable platforms for the studies solar-climate relationships. Using the atmospheric precipitable water vapour (PWV) as a terrestrial response and the ionospheric total electron content (TEC) as a measure solar activity which both derived from ground-based GPS observations, some physical mechanisms of how solar activity exerts their influences on weather/climate changes can be explained. This paper presents an characterization of both TEC and PWV using ground-based GPS receivers to insight Sun-Earth coupling mechanisms through bipolar conjugate points.","PeriodicalId":191194,"journal":{"name":"International Conference on Instrumentation, Communication, Information Technology, and Biomedical Engineering 2009","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Instrumentation, Communication, Information Technology, and Biomedical Engineering 2009","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICI-BME.2009.5417302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
GPS technique is an essential tool to explore of the near-Earth space environment towards improved space weather prediction and such methods provide suitable platforms for the studies solar-climate relationships. Using the atmospheric precipitable water vapour (PWV) as a terrestrial response and the ionospheric total electron content (TEC) as a measure solar activity which both derived from ground-based GPS observations, some physical mechanisms of how solar activity exerts their influences on weather/climate changes can be explained. This paper presents an characterization of both TEC and PWV using ground-based GPS receivers to insight Sun-Earth coupling mechanisms through bipolar conjugate points.