Performance of the Proposed Fast Track Processor for Rare Decays at the ATLAS Experiment

G. Volpi, M. Dell'Orso, F. Crescioli, G. Punzi, P. Giannetti, J. Vivarelli, E. Brubaker, M. Dunford, Young-Kee Kim, M. Shochet, G. Usai, K. Yorita, C. Ciobanu, T. Liss
{"title":"Performance of the Proposed Fast Track Processor for Rare Decays at the ATLAS Experiment","authors":"G. Volpi, M. Dell'Orso, F. Crescioli, G. Punzi, P. Giannetti, J. Vivarelli, E. Brubaker, M. Dunford, Young-Kee Kim, M. Shochet, G. Usai, K. Yorita, C. Ciobanu, T. Liss","doi":"10.1109/RTC.2007.4382820","DOIUrl":null,"url":null,"abstract":"The fast track processor (FTK) has been proposed for high-quality track finding at very high rates (level-1 output rates) for the LHC experiments. Fast, efficient and precise pattern recognition has been studied using a silicon 6-layer sub-detector, including a subset of the pixel and SCT layers. We tested the FTK algorithms using the ATLAS full simulation. We compare the FTK reconstruction quality with the tracking capability of the offline iPatRec algorithm. We show that similar resolutions and efficiencies are reached by FTK at a speed higher than iPatRec by orders of magnitude. With FTK full events are reconstructed at the level-1 output rate. Bs 0rarrmu+mu- events are fully simulated together with background samples. We show that a low level-2 rate is allowed by FTK, even using a single 6 GeV level-1 muon selection trigger. FTK provides the full-resolution track list ready for the level-2 Bs 0 identification. All selection cuts performed by the Event Filter can be easily anticipated at level-2. We present the Bs 0rarrmu+mu- efficiency gain and related level-2 rates.","PeriodicalId":217483,"journal":{"name":"2007 15th IEEE-NPSS Real-Time Conference","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 15th IEEE-NPSS Real-Time Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTC.2007.4382820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The fast track processor (FTK) has been proposed for high-quality track finding at very high rates (level-1 output rates) for the LHC experiments. Fast, efficient and precise pattern recognition has been studied using a silicon 6-layer sub-detector, including a subset of the pixel and SCT layers. We tested the FTK algorithms using the ATLAS full simulation. We compare the FTK reconstruction quality with the tracking capability of the offline iPatRec algorithm. We show that similar resolutions and efficiencies are reached by FTK at a speed higher than iPatRec by orders of magnitude. With FTK full events are reconstructed at the level-1 output rate. Bs 0rarrmu+mu- events are fully simulated together with background samples. We show that a low level-2 rate is allowed by FTK, even using a single 6 GeV level-1 muon selection trigger. FTK provides the full-resolution track list ready for the level-2 Bs 0 identification. All selection cuts performed by the Event Filter can be easily anticipated at level-2. We present the Bs 0rarrmu+mu- efficiency gain and related level-2 rates.
稀有衰变快速通道处理器在ATLAS实验中的性能
为了在大型强子对撞机实验中以非常高的速率(一级输出速率)进行高质量的轨迹发现,提出了快速轨迹处理器(FTK)。使用硅6层子探测器,包括像素层和SCT层的子集,研究了快速,高效和精确的模式识别。我们使用ATLAS完整模拟测试了FTK算法。我们将FTK重建质量与离线iPatRec算法的跟踪能力进行了比较。我们表明,FTK以比iPatRec高几个数量级的速度达到了类似的分辨率和效率。使用FTK,以一级输出速率重建完整事件。b0rarrmu +mu-事件与背景样本一起完全模拟。我们表明,即使使用单个6 GeV的1级μ子选择触发器,FTK也允许低的2级速率。FTK提供全分辨率轨道列表,准备用于2级b0识别。事件过滤器执行的所有选择切割都可以在第2级轻松预测。我们提出了b0rrmu +mu效率增益和相关的2级速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信