Optimal Kernel Parameter Setting for Faults Detection with Stochastic Methods and Data Preprocessing

J. M. B. D. Lázaro, Adrián Rodríguez Ramos, Carlos Cruz Corona, A. Neto, O. Llanes-Santiago
{"title":"Optimal Kernel Parameter Setting for Faults Detection with Stochastic Methods and Data Preprocessing","authors":"J. M. B. D. Lázaro, Adrián Rodríguez Ramos, Carlos Cruz Corona, A. Neto, O. Llanes-Santiago","doi":"10.18605/2175-7275/CEREUS.V11N1P195-209","DOIUrl":null,"url":null,"abstract":"In this paper an indirect optimization criterion for parameter setting the kernel-based fault detection process is applied. The procedure analyzed involves the data preprocessing through the Kernel Independent Component Analysis (KICA) method, and the fault detection by using a classifier based on the Kernel Fuzzy C-means (KFCM) algorithm to reduce the classification errors. The main objective of the paper is the adjustment of the kernel parameters to obtain the best possible performance in the fault detection. To achieve this, two different metaheuristic algorithms are used: Differential Evolution and Particle Swarm Optimization. The proposed approach was evaluated by using the Tennessee Eastman (TE) process benchmark.","PeriodicalId":208128,"journal":{"name":"Revista Cereus","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Cereus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18605/2175-7275/CEREUS.V11N1P195-209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper an indirect optimization criterion for parameter setting the kernel-based fault detection process is applied. The procedure analyzed involves the data preprocessing through the Kernel Independent Component Analysis (KICA) method, and the fault detection by using a classifier based on the Kernel Fuzzy C-means (KFCM) algorithm to reduce the classification errors. The main objective of the paper is the adjustment of the kernel parameters to obtain the best possible performance in the fault detection. To achieve this, two different metaheuristic algorithms are used: Differential Evolution and Particle Swarm Optimization. The proposed approach was evaluated by using the Tennessee Eastman (TE) process benchmark.
基于随机方法的故障检测核参数最优设置及数据预处理
本文提出了一种基于核函数的故障检测过程参数设置的间接优化准则。所分析的过程包括通过核独立分量分析(KICA)方法对数据进行预处理,并使用基于核模糊c均值(KFCM)算法的分类器进行故障检测,以减少分类误差。本文的主要目标是调整核参数以获得故障检测的最佳性能。为了实现这一目标,使用了两种不同的元启发式算法:差分进化和粒子群优化。采用田纳西伊士曼(Tennessee Eastman, TE)过程基准对所提出的方法进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信