S. S. Parihar, G. Pahwa, Jun Z. Huang, Weike Wang, K. Imura, Chenming Hu, Y. Chauhan
{"title":"Cryogenic Characterization and Model Extraction of 5nm Technology Node FinFETs","authors":"S. S. Parihar, G. Pahwa, Jun Z. Huang, Weike Wang, K. Imura, Chenming Hu, Y. Chauhan","doi":"10.1109/EDTM55494.2023.10102942","DOIUrl":null,"url":null,"abstract":"We present cryogenic characterization and compact model extraction of commercially fabricated 5nm technology FinFETs. A modified industry-standard BSIM-CMG model is used to accurately model band-tail, mobility, and velocity saturation effects up to 10K. At 10K, n-FinFET and p-FinFET show 87mV and 92mV threshold voltage shift and sub-threshold slopes of 12.7 and 16.7mV/decade (83% and 78% improvement), respectively. The simulated inverter and ring oscillator at 10K in iso IOFF condition show 38% and 36.53% delay improvement for VDD = 0.75V, respectively. At VDD = 0.35V, inverter simulations show ∽ 70% improvement in delay and Power-Delay-Product. Static leakage and power dissipation are major challenges in FinFETs; the above-mentioned performance enhancements highlight the potential of characterized technology in quantum computers.","PeriodicalId":418413,"journal":{"name":"2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDTM55494.2023.10102942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We present cryogenic characterization and compact model extraction of commercially fabricated 5nm technology FinFETs. A modified industry-standard BSIM-CMG model is used to accurately model band-tail, mobility, and velocity saturation effects up to 10K. At 10K, n-FinFET and p-FinFET show 87mV and 92mV threshold voltage shift and sub-threshold slopes of 12.7 and 16.7mV/decade (83% and 78% improvement), respectively. The simulated inverter and ring oscillator at 10K in iso IOFF condition show 38% and 36.53% delay improvement for VDD = 0.75V, respectively. At VDD = 0.35V, inverter simulations show ∽ 70% improvement in delay and Power-Delay-Product. Static leakage and power dissipation are major challenges in FinFETs; the above-mentioned performance enhancements highlight the potential of characterized technology in quantum computers.