1S1R sub-threshold operation in Crossbar arrays for low power BNN inference computing

J. M. Lopez, F. Rummens, L. Reganaz, A. Heraud, T. Hirtzlin, L. Grenouillet, Gemma Navarro, M. Bernard, C. Carabasse, N. Castellani, V. Meli, S. Martin, T. Magis, E. Vianello, C. Sabbione, D. Deleruyelle, M. Bocquet, J. Portal, G. Molas, F. Andrieu
{"title":"1S1R sub-threshold operation in Crossbar arrays for low power BNN inference computing","authors":"J. M. Lopez, F. Rummens, L. Reganaz, A. Heraud, T. Hirtzlin, L. Grenouillet, Gemma Navarro, M. Bernard, C. Carabasse, N. Castellani, V. Meli, S. Martin, T. Magis, E. Vianello, C. Sabbione, D. Deleruyelle, M. Bocquet, J. Portal, G. Molas, F. Andrieu","doi":"10.1109/IMW52921.2022.9779253","DOIUrl":null,"url":null,"abstract":"We experimentally validated the sub-threshold reading strategy in OxRAM+OTS crossbar arrays for low precision inference in Binarized Neural Networks. In order to optimize the 1S1R sub-threshold current margin, an experimental and theoretical statistical study on HfO2-based 1S1R stacks with various OTS technologies has been performed. Impact of device features (OxRAM RHRS, OTS non-linearity and OTS threshold current) on 1S1R sub-threshold reading is elucidated. Accuracy and power consumption of a Binarized Neural Network designed in 28nm CMOS have been estimated with Monte Carlo simulations. A gain of 3 orders of magnitude in power consumption is demonstrated in comparison with conventional threshold reading strategy, while preserving the same network accuracy.","PeriodicalId":132074,"journal":{"name":"2022 IEEE International Memory Workshop (IMW)","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Memory Workshop (IMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMW52921.2022.9779253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We experimentally validated the sub-threshold reading strategy in OxRAM+OTS crossbar arrays for low precision inference in Binarized Neural Networks. In order to optimize the 1S1R sub-threshold current margin, an experimental and theoretical statistical study on HfO2-based 1S1R stacks with various OTS technologies has been performed. Impact of device features (OxRAM RHRS, OTS non-linearity and OTS threshold current) on 1S1R sub-threshold reading is elucidated. Accuracy and power consumption of a Binarized Neural Network designed in 28nm CMOS have been estimated with Monte Carlo simulations. A gain of 3 orders of magnitude in power consumption is demonstrated in comparison with conventional threshold reading strategy, while preserving the same network accuracy.
用于低功耗BNN推理计算的Crossbar阵列1S1R亚阈值运算
在二值化神经网络低精度推理中,实验验证了OxRAM+OTS交叉棒阵列的亚阈值读取策略。为了优化1S1R的亚阈值电流裕度,对不同OTS技术下基于hfo2的1S1R堆叠进行了实验和理论统计研究。阐明了器件特性(OxRAM rrs、OTS非线性和OTS阈值电流)对1S1R亚阈值读数的影响。利用蒙特卡罗仿真方法对28nm CMOS二值化神经网络的精度和功耗进行了估计。与传统的阈值读取策略相比,功耗增加了3个数量级,同时保持了相同的网络精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信