Large Room Temperature Charge-to-Spin Conversion Efficiency in Topological Insulator/CoFeB bilayers

Qiming Shao, Guoqiang Yu, L. Pan, X. Che, Yabin Fan, K. Murata, Q. He, T. Nie, X. Kou, Kang L. Wang
{"title":"Large Room Temperature Charge-to-Spin Conversion Efficiency in Topological Insulator/CoFeB bilayers","authors":"Qiming Shao, Guoqiang Yu, L. Pan, X. Che, Yabin Fan, K. Murata, Q. He, T. Nie, X. Kou, Kang L. Wang","doi":"10.1109/DRC.2018.8442225","DOIUrl":null,"url":null,"abstract":"Heavy metals and topological insulators are promising materials for converting charge current into spin current for efficient manipulation of magnetization states in magnetic devices [1]–[5]. One of the most important parameters is the charge-to-spin conversion (CS) efficiency. Improving CS efficiency is critical for reducing write current of the emerging nonvolatile memory technology, spin-orbit torque MRAM (SOT-MRAM) [2], which provides comparable speed with SRAM but with a much higher memory capacity. Here, we measure CS efficiency in various topological insulators (TIs) using second-harmonic method (2eo-method) and obtain a record-high value 8.33±0.65 for insulating (BiSb)2 Te3 at room temperature. We first establish the consistency of CS efficiency obtained between spin-torque ferromagnetic resonance (ST-FMR) and 2eo-method. Then, we systematically investigate the CS efficiency in a bilayer consisting of a metallic Bi2Se3 and a CoFeB thin film using 2eo-method. By tuning the Fermi level of TI layer into bulk band gap using (BiSb)2 Te3, we improve the CS efficiency by an order of magnitude.","PeriodicalId":269641,"journal":{"name":"2018 76th Device Research Conference (DRC)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 76th Device Research Conference (DRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2018.8442225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Heavy metals and topological insulators are promising materials for converting charge current into spin current for efficient manipulation of magnetization states in magnetic devices [1]–[5]. One of the most important parameters is the charge-to-spin conversion (CS) efficiency. Improving CS efficiency is critical for reducing write current of the emerging nonvolatile memory technology, spin-orbit torque MRAM (SOT-MRAM) [2], which provides comparable speed with SRAM but with a much higher memory capacity. Here, we measure CS efficiency in various topological insulators (TIs) using second-harmonic method (2eo-method) and obtain a record-high value 8.33±0.65 for insulating (BiSb)2 Te3 at room temperature. We first establish the consistency of CS efficiency obtained between spin-torque ferromagnetic resonance (ST-FMR) and 2eo-method. Then, we systematically investigate the CS efficiency in a bilayer consisting of a metallic Bi2Se3 and a CoFeB thin film using 2eo-method. By tuning the Fermi level of TI layer into bulk band gap using (BiSb)2 Te3, we improve the CS efficiency by an order of magnitude.
拓扑绝缘体/CoFeB双分子层的高室温电荷自旋转换效率
重金属和拓扑绝缘体是将电荷电流转化为自旋电流以有效控制磁性器件磁化状态的有前途的材料[1]-[5]。其中一个最重要的参数是电荷自旋转换效率。提高CS效率对于降低新兴的非易失性存储技术——自旋轨道扭矩MRAM (SOT-MRAM)[2]的写入电流至关重要,该技术提供与SRAM相当的速度,但具有更高的存储容量。本文采用二次谐波法(2eo-method)测量了不同拓扑绝缘子(TIs)的CS效率,并在室温下获得了绝缘(BiSb)2 Te3的最高CS效率(8.33±0.65)。我们首先建立了自旋-转矩铁磁共振(ST-FMR)法与2eo法所得CS效率的一致性。然后,我们用2eo方法系统地研究了由金属Bi2Se3和CoFeB薄膜组成的双分子层的CS效率。通过使用(BiSb)2 Te3将TI层的费米能级调谐到块带隙,我们将CS效率提高了一个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信