Fast model order selection of the nonlinearity in hammerstein systems

G. Mzyk
{"title":"Fast model order selection of the nonlinearity in hammerstein systems","authors":"G. Mzyk","doi":"10.1109/CARPATHIANCC.2012.6228696","DOIUrl":null,"url":null,"abstract":"In the paper we show a new three-stage algorithm identifying the Hammerstein system nonlinearity. The algorithm is designed to work when a poor a priori knowledge is available and when the measurement data set is small. In the first stage, a deconvolution routine is applied to output signal in order to diminish a (usually) harmful influence of the linear dynamic component. Such filtered output is then used in a standard nonparametric estimate (be it kernel or orthogonal series one) to recover the unknown characteristics. Finally, the results of nonparametric estimation are used in the algorithm selecting the best parametric model. The entire proposed approach is illustrated by the simulation example.","PeriodicalId":334936,"journal":{"name":"Proceedings of the 13th International Carpathian Control Conference (ICCC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Carpathian Control Conference (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CARPATHIANCC.2012.6228696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In the paper we show a new three-stage algorithm identifying the Hammerstein system nonlinearity. The algorithm is designed to work when a poor a priori knowledge is available and when the measurement data set is small. In the first stage, a deconvolution routine is applied to output signal in order to diminish a (usually) harmful influence of the linear dynamic component. Such filtered output is then used in a standard nonparametric estimate (be it kernel or orthogonal series one) to recover the unknown characteristics. Finally, the results of nonparametric estimation are used in the algorithm selecting the best parametric model. The entire proposed approach is illustrated by the simulation example.
hammerstein系统非线性的快速模型阶数选择
本文给出了一种新的三阶段识别Hammerstein系统非线性的算法。该算法被设计为在可用的先验知识较差和测量数据集较小的情况下工作。在第一阶段,对输出信号应用反褶积程序,以减少线性动态分量(通常)的有害影响。然后将这种过滤后的输出用于标准的非参数估计(无论是核估计还是正交序列估计)以恢复未知特征。最后,将非参数估计的结果用于选择最佳参数模型的算法。通过仿真算例说明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信