A multichannel widely linearwiener filter for binaural noise reduction in the short-time-fourier-transform domain

Liheng Zhao, Jingdong Chen, J. Benesty
{"title":"A multichannel widely linearwiener filter for binaural noise reduction in the short-time-fourier-transform domain","authors":"Liheng Zhao, Jingdong Chen, J. Benesty","doi":"10.1109/ChinaSIP.2014.6889237","DOIUrl":null,"url":null,"abstract":"Binaural noise reduction is a very challenging problem since it requires not only to reduce noise, but also to recover the spatial information of the desired speech source so that the listener can localize this source from the binaural outputs. In this paper, we study the problem in the short-time-Fourier-transform (STFT) domain with the use of an array of microphones. Combining the multichannel microphone observations into a number of complex signals and merging the two (binaural) expected output channels into a complex signal, we reformulate the problem with the widely linear (WL) estimation technique. To efficiently achieve the optimal estimation, the complex signals are transformed into the frequency domain via the STFT. We then derive a WL Wiener filter based on the WL estimation theory and the mean-squared-error (MSE) criterion. This WL Wiener filter is shown to be able to exploit the noncircularity of the complex speech signals and the spatial information captured by the microphone array to achieve noise reduction while preserving the sound spatial information.","PeriodicalId":248977,"journal":{"name":"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ChinaSIP.2014.6889237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Binaural noise reduction is a very challenging problem since it requires not only to reduce noise, but also to recover the spatial information of the desired speech source so that the listener can localize this source from the binaural outputs. In this paper, we study the problem in the short-time-Fourier-transform (STFT) domain with the use of an array of microphones. Combining the multichannel microphone observations into a number of complex signals and merging the two (binaural) expected output channels into a complex signal, we reformulate the problem with the widely linear (WL) estimation technique. To efficiently achieve the optimal estimation, the complex signals are transformed into the frequency domain via the STFT. We then derive a WL Wiener filter based on the WL estimation theory and the mean-squared-error (MSE) criterion. This WL Wiener filter is shown to be able to exploit the noncircularity of the complex speech signals and the spatial information captured by the microphone array to achieve noise reduction while preserving the sound spatial information.
一种用于短时傅里叶变换域双耳降噪的多通道宽线性维纳滤波器
双耳降噪是一个非常具有挑战性的问题,因为它不仅需要降低噪声,而且需要恢复所需声源的空间信息,以便听者可以从双耳输出中定位该声源。本文利用传声器阵列研究了短时傅里叶变换(STFT)域的问题。将多通道麦克风观测结果合并为多个复杂信号,并将两个(双耳)预期输出通道合并为一个复杂信号,我们用广泛线性(WL)估计技术重新表述了这个问题。为了有效地实现最优估计,将复信号通过STFT变换到频域。然后,我们基于小波估计理论和均方误差(MSE)准则推导了小波维纳滤波器。该WL维纳滤波器能够利用复杂语音信号的非圆度和麦克风阵列捕获的空间信息,在保留声音空间信息的同时实现降噪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信