Rule driven multi objective dynamic scheduling by data envelopment analysis and reinforcement learning

Xili Chen, X. Hao, H. Lin, Tomohiro Murata
{"title":"Rule driven multi objective dynamic scheduling by data envelopment analysis and reinforcement learning","authors":"Xili Chen, X. Hao, H. Lin, Tomohiro Murata","doi":"10.1109/ICAL.2010.5585316","DOIUrl":null,"url":null,"abstract":"This paper presents a rule driven method of developing composite dispatching rule for multi objective dynamic scheduling. Data envelopment analysis is adopted to select elementary dispatching rules, where each rule is justified as efficient for optimizing specific operational objectives of interest. The selected rules are subsequently combined into a single composite rule using the weighted aggregation manner. An intelligent agent is trained using reinforcement learning to acquire the scheduling knowledge of assigning the appropriate weighting values for building the composite rule to cope with the WIP fluctuation of a machine. Implementation of the proposed method in a two objective dynamic job shop scheduling problem is demonstrated and the results are satisfactory.","PeriodicalId":393739,"journal":{"name":"2010 IEEE International Conference on Automation and Logistics","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Automation and Logistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAL.2010.5585316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

This paper presents a rule driven method of developing composite dispatching rule for multi objective dynamic scheduling. Data envelopment analysis is adopted to select elementary dispatching rules, where each rule is justified as efficient for optimizing specific operational objectives of interest. The selected rules are subsequently combined into a single composite rule using the weighted aggregation manner. An intelligent agent is trained using reinforcement learning to acquire the scheduling knowledge of assigning the appropriate weighting values for building the composite rule to cope with the WIP fluctuation of a machine. Implementation of the proposed method in a two objective dynamic job shop scheduling problem is demonstrated and the results are satisfactory.
基于数据包络分析和强化学习的规则驱动多目标动态调度
提出了一种规则驱动的多目标动态调度复合调度规则制定方法。采用数据包络分析选择基本调度规则,其中每个规则都被证明是有效的,可以优化感兴趣的特定操作目标。随后,使用加权聚合方式将所选规则组合为单个组合规则。利用强化学习训练智能体,获取分配适当权重值的调度知识,构建复合规则,以应对机器在制品的波动。最后将该方法应用于一个双目标动态作业车间调度问题,得到了满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信