Decoding color of stimuli given to a human subject from functional magnetic resonance imaging voxel patterns using machine learning algorithm

Noriki Koike, Y. Hatakeyama, Shinichi Yoshida
{"title":"Decoding color of stimuli given to a human subject from functional magnetic resonance imaging voxel patterns using machine learning algorithm","authors":"Noriki Koike, Y. Hatakeyama, Shinichi Yoshida","doi":"10.1109/WAC.2014.6936100","DOIUrl":null,"url":null,"abstract":"A brain decoding of visual stimuli using various machine learning is proposed in order to make a foundation of brain computer interface. Visual stimuli that are representations of objects, shapes, colors, and so on, are important information for human perception. Some of properties of processing of visual information in human brain are revealed, for example existence of neuron responding an orientation of line segment. This research reveals the precision of pattern recognition using supervised machine learning of human brain activity when human see color circle drawn In a display. Support vector machine with various kernel, neural network, random forest, and sparse logistic regression are employed in this research and compared among each other. The result shows that the highest precision Is 71% for predicting color of circle from three colors using sparse logistic regression.","PeriodicalId":196519,"journal":{"name":"2014 World Automation Congress (WAC)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 World Automation Congress (WAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WAC.2014.6936100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A brain decoding of visual stimuli using various machine learning is proposed in order to make a foundation of brain computer interface. Visual stimuli that are representations of objects, shapes, colors, and so on, are important information for human perception. Some of properties of processing of visual information in human brain are revealed, for example existence of neuron responding an orientation of line segment. This research reveals the precision of pattern recognition using supervised machine learning of human brain activity when human see color circle drawn In a display. Support vector machine with various kernel, neural network, random forest, and sparse logistic regression are employed in this research and compared among each other. The result shows that the highest precision Is 71% for predicting color of circle from three colors using sparse logistic regression.
利用机器学习算法从功能性磁共振成像体素模式中解码给人类受试者的刺激颜色
提出了一种利用各种机器学习方法对视觉刺激进行脑解码的方法,为脑机接口奠定基础。视觉刺激是物体、形状、颜色等的表征,是人类感知的重要信息。揭示了人脑处理视觉信息的一些特性,如对线段方向作出响应的神经元的存在。这项研究揭示了当人类看到显示器上画的颜色圈时,使用有监督的机器学习对人类大脑活动进行模式识别的精度。本研究采用了多核支持向量机、神经网络、随机森林和稀疏逻辑回归进行比较。结果表明,利用稀疏逻辑回归对三种颜色的圆颜色进行预测,准确率最高可达71%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信