Compatible number representations

R. A. Keir
{"title":"Compatible number representations","authors":"R. A. Keir","doi":"10.1109/ARITH.1975.6156990","DOIUrl":null,"url":null,"abstract":"A compatible number system for mixed fixed-point and floating-point arithmetic is described in terms of number formats and opcode sequences (for hardwired or microcoded control). This inexpensive system can be as fast as fixed-point arithmetic on integers, is faster than normalized arithmetic in floating point, gets answers identical to those of normalized arithmetic, and automatically satisfies the Algol-60 mixed-mode rules. The central concept is the avoidance of meaningless \"normalization\" following arithmetic operations. Adoption of this system could lead to simpler compilers.","PeriodicalId":360742,"journal":{"name":"1975 IEEE 3rd Symposium on Computer Arithmetic (ARITH)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1975-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1975 IEEE 3rd Symposium on Computer Arithmetic (ARITH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.1975.6156990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A compatible number system for mixed fixed-point and floating-point arithmetic is described in terms of number formats and opcode sequences (for hardwired or microcoded control). This inexpensive system can be as fast as fixed-point arithmetic on integers, is faster than normalized arithmetic in floating point, gets answers identical to those of normalized arithmetic, and automatically satisfies the Algol-60 mixed-mode rules. The central concept is the avoidance of meaningless "normalization" following arithmetic operations. Adoption of this system could lead to simpler compilers.
兼容的数字表示
根据数字格式和操作码序列(用于硬连线或微编码控制)描述了用于混合定点和浮点运算的兼容数字系统。这种廉价的系统可以与整数上的定点算术一样快,比浮点数上的规范化算术更快,得到与规范化算术相同的答案,并自动满足Algol-60混合模式规则。核心概念是避免在算术运算之后进行无意义的“规范化”。采用这个系统可以导致更简单的编译器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信