An intelligent approach for mining frequent patterns in spatial database system using SQL

A. Tripathy, S. Das, P. Patra
{"title":"An intelligent approach for mining frequent patterns in spatial database system using SQL","authors":"A. Tripathy, S. Das, P. Patra","doi":"10.1109/EPSCICON.2012.6175236","DOIUrl":null,"url":null,"abstract":"Mining frequent pattern from spatial databases systems has always remained a challenge for researchers. However, the performance of SQL based spatial data mining is known to fall behind specialized implementation since the prohibitive nature of the cost associated with extracting knowledge, and the lack of suitable declarative query language support. In this paper, we proposed an enhancement of existing mining algorithm based on SQL for the problem of finding frequent patterns for efficiently mining frequent patterns of spatial objects occurring in space. The proposed algorithm is termed as Frequent Positive Association Rule/Frequent Negative Association Rule (FPAR/FNAR). This algorithm is an improvement of the FP growth algorithm. Further an enhancement of the improved algorithm by a numerical method based on SQL for generating frequent patterns known as Transaction Frequent Pattern (TFP) Tree is proposed to reduces the storage space of the spatial dataset and overcomes some limitations of the previous method.","PeriodicalId":143947,"journal":{"name":"2012 International Conference on Power, Signals, Controls and Computation","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Power, Signals, Controls and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPSCICON.2012.6175236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Mining frequent pattern from spatial databases systems has always remained a challenge for researchers. However, the performance of SQL based spatial data mining is known to fall behind specialized implementation since the prohibitive nature of the cost associated with extracting knowledge, and the lack of suitable declarative query language support. In this paper, we proposed an enhancement of existing mining algorithm based on SQL for the problem of finding frequent patterns for efficiently mining frequent patterns of spatial objects occurring in space. The proposed algorithm is termed as Frequent Positive Association Rule/Frequent Negative Association Rule (FPAR/FNAR). This algorithm is an improvement of the FP growth algorithm. Further an enhancement of the improved algorithm by a numerical method based on SQL for generating frequent patterns known as Transaction Frequent Pattern (TFP) Tree is proposed to reduces the storage space of the spatial dataset and overcomes some limitations of the previous method.
一种基于SQL的空间数据库频繁模式智能挖掘方法
从空间数据库系统中挖掘频繁模式一直是研究人员面临的挑战。然而,基于SQL的空间数据挖掘的性能落后于专门的实现,因为与提取知识相关的成本令人望而却步,并且缺乏适当的声明性查询语言支持。针对频繁模式的挖掘问题,本文提出了一种基于SQL的现有挖掘算法的改进,以便有效地挖掘空间中出现的空间对象的频繁模式。该算法被称为频繁正关联规则/频繁负关联规则(FPAR/FNAR)。该算法是对FP生长算法的改进。在此基础上,提出了一种基于SQL的频繁模式生成的数值方法,即事务频繁模式树(Transaction frequency Pattern, TFP)树,以减少空间数据集的存储空间,克服了原有方法的一些局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信