A Computing-in-Memory Cell Design based on LTPO Hybrid Thin Film Transistor Integration

Liankai Zheng, Yu Huang, Xiaojun Guo
{"title":"A Computing-in-Memory Cell Design based on LTPO Hybrid Thin Film Transistor Integration","authors":"Liankai Zheng, Yu Huang, Xiaojun Guo","doi":"10.1109/IFETC53656.2022.9948500","DOIUrl":null,"url":null,"abstract":"This paper presents a compute-in-memory (CIM) cell design based on the low-temperature polycrystalline-silicon (LTPS) oxide (LTPO) hybrid thin-film transistor (TFT) technology. The weight of the cell is quantized to 4 bits though 4 LTPS TFTs of different width-to-length ratios. The weights are able to be maintained for long-term operation with ultra-low leakage amorphous indium-gallium-zinc-oxide (a-IGZO) TFT switches. A CIM array is designed to implement a 3-layer MLP neural network for MNIST dataset recognition, which can achieve recognition accuracy of 98% even at a 5% relative threshold voltage fluctuation of the LTPS TFT.","PeriodicalId":289035,"journal":{"name":"2022 IEEE International Flexible Electronics Technology Conference (IFETC)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Flexible Electronics Technology Conference (IFETC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IFETC53656.2022.9948500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a compute-in-memory (CIM) cell design based on the low-temperature polycrystalline-silicon (LTPS) oxide (LTPO) hybrid thin-film transistor (TFT) technology. The weight of the cell is quantized to 4 bits though 4 LTPS TFTs of different width-to-length ratios. The weights are able to be maintained for long-term operation with ultra-low leakage amorphous indium-gallium-zinc-oxide (a-IGZO) TFT switches. A CIM array is designed to implement a 3-layer MLP neural network for MNIST dataset recognition, which can achieve recognition accuracy of 98% even at a 5% relative threshold voltage fluctuation of the LTPS TFT.
基于LTPO混合薄膜晶体管集成的内存计算单元设计
本文提出了一种基于低温多晶硅(LTPS)氧化物(LTPO)混合薄膜晶体管(TFT)技术的内存计算(CIM)电池设计。单元的权重通过4个不同宽长比的LTPS tft量化为4位。使用超低泄漏非晶铟镓锌氧化物(a-IGZO) TFT开关,重量能够保持长期运行。设计了一个CIM阵列,实现了一种用于MNIST数据集识别的3层MLP神经网络,即使在LTPS TFT相对阈值电压波动5%的情况下,该网络的识别准确率也达到98%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信