Sound-Convolutional Recurrent Neural Networks for Vehicle Classification Based on Vehicle Acoustic Signals

Yuxi Luo, Ligong Chen, Qian Wu, Xinghong Zhang
{"title":"Sound-Convolutional Recurrent Neural Networks for Vehicle Classification Based on Vehicle Acoustic Signals","authors":"Yuxi Luo, Ligong Chen, Qian Wu, Xinghong Zhang","doi":"10.1109/ICSCGE53744.2021.9654357","DOIUrl":null,"url":null,"abstract":"Vehicle classification based on acoustic signals in urban environment provides valuable perception information for smart city management. In order to improve the accuracy of current vehicle sound classification, we propose a Sound-Convolutional Recurrent Neural Networks (S-CRNN) method. It combines convolutional neural networks (CNN) and recurrent neural network (RNN). By comparing the weighted F1 score (F1) and error rate (ER), it is proved that the proposed S-CRNN method has better classification performance than the original Sound-Convolutional Neural Networks (S-CNN) method, especially in the vehicles level, the weighted F1 value increases to 28.5%. Long short-term memory (LSTM) and Gate Recurrent Unit (GRU) are both used as RNN for comparison. And the S-CRNN model with GRU reduces the training time by 2.65 hours, maintaining the main performance in the meantime.","PeriodicalId":329321,"journal":{"name":"2021 International Conference on Smart City and Green Energy (ICSCGE)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Smart City and Green Energy (ICSCGE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCGE53744.2021.9654357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Vehicle classification based on acoustic signals in urban environment provides valuable perception information for smart city management. In order to improve the accuracy of current vehicle sound classification, we propose a Sound-Convolutional Recurrent Neural Networks (S-CRNN) method. It combines convolutional neural networks (CNN) and recurrent neural network (RNN). By comparing the weighted F1 score (F1) and error rate (ER), it is proved that the proposed S-CRNN method has better classification performance than the original Sound-Convolutional Neural Networks (S-CNN) method, especially in the vehicles level, the weighted F1 value increases to 28.5%. Long short-term memory (LSTM) and Gate Recurrent Unit (GRU) are both used as RNN for comparison. And the S-CRNN model with GRU reduces the training time by 2.65 hours, maintaining the main performance in the meantime.
基于车辆声信号的声音卷积递归神经网络车辆分类
城市环境中基于声信号的车辆分类为智慧城市管理提供了有价值的感知信息。为了提高当前车辆声音分类的准确率,我们提出了一种声音-卷积递归神经网络(S-CRNN)方法。它结合了卷积神经网络(CNN)和循环神经网络(RNN)。通过比较加权F1分数(F1)和错误率(ER),证明了所提S-CRNN方法比原Sound-Convolutional Neural Networks (S-CNN)方法具有更好的分类性能,特别是在车辆级别,加权F1值提高到28.5%。采用长短期记忆(LSTM)和门递归单元(GRU)作为RNN进行比较。采用GRU的S-CRNN模型在保持主要性能的同时,减少了2.65 h的训练时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信