Modelo basado en aprendizaje de máquina estadístico para la determinación de factores que influyen en el rendimiento de sistemas de gestión de bases de datos relacionales
{"title":"Modelo basado en aprendizaje de máquina estadístico para la determinación de factores que influyen en el rendimiento de sistemas de gestión de bases de datos relacionales","authors":"José Luis Ponce-Vergara","doi":"10.26439/ciis2020.5511","DOIUrl":null,"url":null,"abstract":"Los procesos de negocios que soportan sus operaciones con aplicaciones que interactúan con sistemas de gestión de bases de datos relacionales (RDBMS) pueden incrementar su productividad a través de la identificación de los factores que afectan el rendimiento de las ejecuciones de las sentencias SQL que conforman su carga de trabajo, especialmente las cargas generadas por aplicaciones implementadas en ambientes de producción, que son recurrentes en el tiempo. El artículo propone un modelo de identificación de factores que afectan el rendi miento de las ejecuciones de las sentencias SQL que se procesan en un RDBMS, valiéndose de algoritmos de aprendizaje de máquina estadístico (análisis de componentes principales y análi sis de correlación canónica) que explotan la información de los planes, estadísticas y métricas generadas durante el ciclo de vida de las ejecuciones de las sentencias SQL.","PeriodicalId":256978,"journal":{"name":"Actas del Congreso Internacional de Ingeniería de Sistemas 2020: Construyendo un mundo inteligente para la sostenibilidad","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Actas del Congreso Internacional de Ingeniería de Sistemas 2020: Construyendo un mundo inteligente para la sostenibilidad","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26439/ciis2020.5511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Los procesos de negocios que soportan sus operaciones con aplicaciones que interactúan con sistemas de gestión de bases de datos relacionales (RDBMS) pueden incrementar su productividad a través de la identificación de los factores que afectan el rendimiento de las ejecuciones de las sentencias SQL que conforman su carga de trabajo, especialmente las cargas generadas por aplicaciones implementadas en ambientes de producción, que son recurrentes en el tiempo. El artículo propone un modelo de identificación de factores que afectan el rendi miento de las ejecuciones de las sentencias SQL que se procesan en un RDBMS, valiéndose de algoritmos de aprendizaje de máquina estadístico (análisis de componentes principales y análi sis de correlación canónica) que explotan la información de los planes, estadísticas y métricas generadas durante el ciclo de vida de las ejecuciones de las sentencias SQL.