H. Fukuda, S. Horiguchi, M. Urano, K. Fukami, K. Matsuda, N. Ohwada, H. Akiya
{"title":"A BiCMOS channelless masterslice with on-chip voltage converter","authors":"H. Fukuda, S. Horiguchi, M. Urano, K. Fukami, K. Matsuda, N. Ohwada, H. Akiya","doi":"10.1109/ISSCC.1989.48248","DOIUrl":null,"url":null,"abstract":"An approach to solving reliability problems due to voltage tolerance in submicron devices is described which involves lowering the operating voltage using an on-chip voltage conversion system. The masterslice has an on-chip voltage converter, TLL-compatible I/O circuits and uses advanced 0.8- mu m BiCMOS technology. A cross-sectional view of the BiCMOS device, which consists of CMOS transistors with simple n-well structure and an n-p-n bipolar transistor, is shown. The masterslice has been applied to a digital signal processing circuit. The chip contains 20 k gates, including four multiplier macrocells and random logic circuits. In the random logic circuits, which consist of double-size transistors, the packing density is 240 gate/mm/sup 2/, and the average delay is 600 ps for a two-input NAND gate with FO=3 and 1-mm wiring length. In the multipliers, 660 gate/mm/sup 2/ packing density and 450 ps average delay for 2-input NAND gate with FO=3 are attained.<<ETX>>","PeriodicalId":385838,"journal":{"name":"IEEE International Solid-State Circuits Conference, 1989 ISSCC. Digest of Technical Papers","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Solid-State Circuits Conference, 1989 ISSCC. Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.1989.48248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
An approach to solving reliability problems due to voltage tolerance in submicron devices is described which involves lowering the operating voltage using an on-chip voltage conversion system. The masterslice has an on-chip voltage converter, TLL-compatible I/O circuits and uses advanced 0.8- mu m BiCMOS technology. A cross-sectional view of the BiCMOS device, which consists of CMOS transistors with simple n-well structure and an n-p-n bipolar transistor, is shown. The masterslice has been applied to a digital signal processing circuit. The chip contains 20 k gates, including four multiplier macrocells and random logic circuits. In the random logic circuits, which consist of double-size transistors, the packing density is 240 gate/mm/sup 2/, and the average delay is 600 ps for a two-input NAND gate with FO=3 and 1-mm wiring length. In the multipliers, 660 gate/mm/sup 2/ packing density and 450 ps average delay for 2-input NAND gate with FO=3 are attained.<>