On combinational logic for sign detection in residue number systems

D. Banerji, Saroj Kaushik
{"title":"On combinational logic for sign detection in residue number systems","authors":"D. Banerji, Saroj Kaushik","doi":"10.1109/ARITH.1975.6156971","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the algebraic sign detection of a number in a residue number system. The proposed solution is applicable only to nonredundant systems. The method utilizes a systematic decomposition of the sign function S that is based on some special properties of S. Starting with the canonical sum-of-products expression for S, we transform the expression to a form whose realization is simpler than the canonical form realization and, if possible, also simpler than the minimal sum-of-products realization. In some cases, the proposed method yields savings as high as 85% compared to the minimal sum-of-products realization for S.","PeriodicalId":360742,"journal":{"name":"1975 IEEE 3rd Symposium on Computer Arithmetic (ARITH)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1975-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1975 IEEE 3rd Symposium on Computer Arithmetic (ARITH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.1975.6156971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper is concerned with the algebraic sign detection of a number in a residue number system. The proposed solution is applicable only to nonredundant systems. The method utilizes a systematic decomposition of the sign function S that is based on some special properties of S. Starting with the canonical sum-of-products expression for S, we transform the expression to a form whose realization is simpler than the canonical form realization and, if possible, also simpler than the minimal sum-of-products realization. In some cases, the proposed method yields savings as high as 85% compared to the minimal sum-of-products realization for S.
余数系统中符号检测的组合逻辑
本文研究了残数系统中数的代数符号检测问题。所提出的解决方案仅适用于非冗余系统。该方法利用基于S的一些特殊性质的符号函数S的系统分解,从S的规范积和表达式开始,我们将该表达式转换为一种比规范形式实现更简单的形式,如果可能的话,也比最小积和实现更简单。在某些情况下,与S的最小产品和实现相比,所提出的方法可节省高达85%的费用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信