Interactive classifier system for real robot learning

D. Katagami, S. Yamada
{"title":"Interactive classifier system for real robot learning","authors":"D. Katagami, S. Yamada","doi":"10.1109/ROMAN.2000.892505","DOIUrl":null,"url":null,"abstract":"We describe a fast learning method for a mobile robot which acquires autonomous behaviors from interaction between a human and a robot. We develop a behavior learning method ICS (interactive classifier system) using evolutionary computation and a mobile robot is able to quickly learn rules so that a human operator can directly teach a physical robot. Also the ICS is a novel evolutionary robotics approach, using an adaptive classifier system, to environmental changes. The ICS has two major characteristics for evolutionary robotics. For one thing, it can speedup learning by means of generating initial individuals from human-robot interaction. For another, it is a kind of incremental learning method which adds new acquired rules to priori knowledge by teaching from human-robot interaction at any time.","PeriodicalId":337709,"journal":{"name":"Proceedings 9th IEEE International Workshop on Robot and Human Interactive Communication. IEEE RO-MAN 2000 (Cat. No.00TH8499)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 9th IEEE International Workshop on Robot and Human Interactive Communication. IEEE RO-MAN 2000 (Cat. No.00TH8499)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROMAN.2000.892505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

We describe a fast learning method for a mobile robot which acquires autonomous behaviors from interaction between a human and a robot. We develop a behavior learning method ICS (interactive classifier system) using evolutionary computation and a mobile robot is able to quickly learn rules so that a human operator can directly teach a physical robot. Also the ICS is a novel evolutionary robotics approach, using an adaptive classifier system, to environmental changes. The ICS has two major characteristics for evolutionary robotics. For one thing, it can speedup learning by means of generating initial individuals from human-robot interaction. For another, it is a kind of incremental learning method which adds new acquired rules to priori knowledge by teaching from human-robot interaction at any time.
用于真实机器人学习的交互式分类器系统
本文描述了一种移动机器人从人与机器人的交互中获取自主行为的快速学习方法。我们开发了一种使用进化计算的行为学习方法ICS(交互式分类器系统),移动机器人能够快速学习规则,以便人类操作员可以直接教物理机器人。此外,ICS是一种新的进化机器人方法,使用自适应分类系统来适应环境变化。ICS具有进化机器人的两个主要特征。首先,它可以通过人机交互生成初始个体来加速学习。另一方面,它是一种增量式学习方法,通过随时从人机交互中进行教学,将新获得的规则添加到先验知识中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信