{"title":"Sarnak’s conjecture for a class of rank-one subshifts","authors":"Mahmood Etedadialiabadi, Su Gao","doi":"10.1090/bproc/148","DOIUrl":null,"url":null,"abstract":"Using techniques developed by Kanigowski, Lemańczyk, and Radziwiłł [Fund. Math. 255 (2021), pp. 309–336], we verify Sarnak’s conjecture for two classes of rank-one subshifts with unbounded cutting parameters. The first class of rank-one subshifts we consider is called almost complete congruency classes (accc), the definition of which is motivated by the main result of Foreman, Gao, Hill, Silva, and Weiss [Isr. J. Math., To appear], which implies that when a rank-one subshift carries a unique nonatomic invariant probability measure, it is accc if it is measure-theoretically isomorphic to an odometer. The second class we consider consists of Katok’s map and its generalizations.","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Using techniques developed by Kanigowski, Lemańczyk, and Radziwiłł [Fund. Math. 255 (2021), pp. 309–336], we verify Sarnak’s conjecture for two classes of rank-one subshifts with unbounded cutting parameters. The first class of rank-one subshifts we consider is called almost complete congruency classes (accc), the definition of which is motivated by the main result of Foreman, Gao, Hill, Silva, and Weiss [Isr. J. Math., To appear], which implies that when a rank-one subshift carries a unique nonatomic invariant probability measure, it is accc if it is measure-theoretically isomorphic to an odometer. The second class we consider consists of Katok’s map and its generalizations.