D. Predoi, Rodica V. Ghita, Simona Liliana Iconaru, Carmen Laura Cimpeanu, Stefania Mariana Raita
{"title":"Application of Nanotechnology Solutions in Plants Fertilization","authors":"D. Predoi, Rodica V. Ghita, Simona Liliana Iconaru, Carmen Laura Cimpeanu, Stefania Mariana Raita","doi":"10.5772/intechopen.91240","DOIUrl":null,"url":null,"abstract":"Post-modern society is viewed nowadays as a technologized society, where the great solutions to human problems can be solved by the progress of technology in economics from classical industry to communications. In the last years, nanotechnology is called to play an important part in the global food production, food security and food safety in the sense that the use of nanoscale micronutrients conduced to suppressing crop disease and the relationship between nutritional status and plant diseases is investigated. Nanomaterials are capable to penetrate into cells of herbs; they can carry DNA and other chemical compounds in the cells extending the possibility in plant biotechnology to target special gene manipulation. It is important to note that the concentration, plant organ or tissue, exposure rate, elemental form, plant species, and exposure dosage (chronic/acute) affect the plant response and in particular the distinct stress response. The complex process of utilization nanoparticles in agriculture has to be monitored to a level that avoids further environmental contamination. The present and future use of nanoparticles as micronutrients is affected by different risks related to nanotoxicity of micronutrients, a problem to be solved by an appropriate and safe circuit of nanoparticles in soil, water, plants and at last in human organism.","PeriodicalId":281844,"journal":{"name":"Urban Horticulture - Necessity of the Future","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Horticulture - Necessity of the Future","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.91240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Post-modern society is viewed nowadays as a technologized society, where the great solutions to human problems can be solved by the progress of technology in economics from classical industry to communications. In the last years, nanotechnology is called to play an important part in the global food production, food security and food safety in the sense that the use of nanoscale micronutrients conduced to suppressing crop disease and the relationship between nutritional status and plant diseases is investigated. Nanomaterials are capable to penetrate into cells of herbs; they can carry DNA and other chemical compounds in the cells extending the possibility in plant biotechnology to target special gene manipulation. It is important to note that the concentration, plant organ or tissue, exposure rate, elemental form, plant species, and exposure dosage (chronic/acute) affect the plant response and in particular the distinct stress response. The complex process of utilization nanoparticles in agriculture has to be monitored to a level that avoids further environmental contamination. The present and future use of nanoparticles as micronutrients is affected by different risks related to nanotoxicity of micronutrients, a problem to be solved by an appropriate and safe circuit of nanoparticles in soil, water, plants and at last in human organism.