{"title":"On the Distribution of a Discrete Sample Path of a Square-Root Diffusion","authors":"Michael B. Gordy","doi":"10.2139/ssrn.2051017","DOIUrl":null,"url":null,"abstract":"We derive the multivariate moment generating function (mgf) for the stationary distribution of a discrete sample path of n observations of a square-root diffusion (CIR) process, X(t). The form of the mgf establishes that the stationary joint distribution of (X(t(1)),...,X(t(n))) for any fixed vector of observation times (t(1),...,t(n)) is a Krishnamoorthy-Parthasarathy multivariate gamma distribution. As a corollary, we obtain the mgf for the increment X(t+dt)-X(t), and show that the increment is equivalent in distribution to a scaled difference of two independent draws from a gamma distribution. Simple closed-form solutions for the moments of the increments are given.","PeriodicalId":153113,"journal":{"name":"Board of Governors of the Federal Reserve System Research Series","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Board of Governors of the Federal Reserve System Research Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2051017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
We derive the multivariate moment generating function (mgf) for the stationary distribution of a discrete sample path of n observations of a square-root diffusion (CIR) process, X(t). The form of the mgf establishes that the stationary joint distribution of (X(t(1)),...,X(t(n))) for any fixed vector of observation times (t(1),...,t(n)) is a Krishnamoorthy-Parthasarathy multivariate gamma distribution. As a corollary, we obtain the mgf for the increment X(t+dt)-X(t), and show that the increment is equivalent in distribution to a scaled difference of two independent draws from a gamma distribution. Simple closed-form solutions for the moments of the increments are given.