Decision Making Optimization for Job Offloading in Vehicular Edge Computing Networks

Christian Grasso, G. Schembra
{"title":"Decision Making Optimization for Job Offloading in Vehicular Edge Computing Networks","authors":"Christian Grasso, G. Schembra","doi":"10.23919/AEITAUTOMOTIVE50086.2020.9307383","DOIUrl":null,"url":null,"abstract":"Vehicular Networks will play a crucial role in future Intelligent Transportation Systems (ITS). Due to the limited computing capacity of the vehicles, a certain number of data jobs could be offloaded to external servers. However, offloading to servers in remote clouds is not possible due to latency requirements of some applications or if generated jobs are too \"big\" (big data). For this reason, thanks to 5G technology and Multi-Access Edge Computing (MEC), it is possible to offload jobs to servers placed at the edge of the network, realizing the Vehicular Edge Computing (VEC). The aim of this paper is to define a Decision Making Scheme for computation offloading, with the objective of minimizing job offloading costs, while respecting some constraints in terms of processing delay and loss probability. Some numerical results are presented to demonstrate the performance of the proposed solution.","PeriodicalId":104806,"journal":{"name":"2020 AEIT International Conference of Electrical and Electronic Technologies for Automotive (AEIT AUTOMOTIVE)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 AEIT International Conference of Electrical and Electronic Technologies for Automotive (AEIT AUTOMOTIVE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/AEITAUTOMOTIVE50086.2020.9307383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Vehicular Networks will play a crucial role in future Intelligent Transportation Systems (ITS). Due to the limited computing capacity of the vehicles, a certain number of data jobs could be offloaded to external servers. However, offloading to servers in remote clouds is not possible due to latency requirements of some applications or if generated jobs are too "big" (big data). For this reason, thanks to 5G technology and Multi-Access Edge Computing (MEC), it is possible to offload jobs to servers placed at the edge of the network, realizing the Vehicular Edge Computing (VEC). The aim of this paper is to define a Decision Making Scheme for computation offloading, with the objective of minimizing job offloading costs, while respecting some constraints in terms of processing delay and loss probability. Some numerical results are presented to demonstrate the performance of the proposed solution.
车辆边缘计算网络作业卸载决策优化
车辆网络将在未来的智能交通系统(ITS)中发挥至关重要的作用。由于车辆的计算能力有限,可以将一定数量的数据作业卸载到外部服务器上。但是,由于某些应用程序的延迟需求,或者生成的作业太“大”(大数据),无法将负载卸载到远程云中的服务器上。因此,借助5G技术和多接入边缘计算(MEC),可以将工作卸载到位于网络边缘的服务器上,从而实现车辆边缘计算(VEC)。本文的目的是定义一种计算卸载决策方案,以最小化作业卸载成本为目标,同时尊重处理延迟和损失概率方面的一些约束。数值结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信