{"title":"Internal Ribosome Entry Site-Mediated Translation in Neuronal Protein Synthesis","authors":"M. Holcik","doi":"10.1093/OXFORDHB/9780190686307.013.9","DOIUrl":null,"url":null,"abstract":"While the majority of cellular mRNAs are translated by a cap-dependent mechanism, a subset of mRNAs can use an alternative mode of translation that, instead of cap, relies on discreet RNA elements that help to recruit the ribosome. This mode of translation, termed Internal Ribosome Entry Site (IRES)–dependent translation, is particularly important during conditions of compromised global protein synthesis or for a local, precisely timed translation of specific mRNAs. This latter purpose is of considerable importance in cells of the CNS for their normal function. Recently, the disruption of the IRES-mediated translation has also been linked to pathological processes, suggesting that full understanding and targeting of this peculiar mechanism could be used for therapeutic intervention.","PeriodicalId":234037,"journal":{"name":"The Oxford Handbook of Neuronal Protein Synthesis","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Oxford Handbook of Neuronal Protein Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/OXFORDHB/9780190686307.013.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
While the majority of cellular mRNAs are translated by a cap-dependent mechanism, a subset of mRNAs can use an alternative mode of translation that, instead of cap, relies on discreet RNA elements that help to recruit the ribosome. This mode of translation, termed Internal Ribosome Entry Site (IRES)–dependent translation, is particularly important during conditions of compromised global protein synthesis or for a local, precisely timed translation of specific mRNAs. This latter purpose is of considerable importance in cells of the CNS for their normal function. Recently, the disruption of the IRES-mediated translation has also been linked to pathological processes, suggesting that full understanding and targeting of this peculiar mechanism could be used for therapeutic intervention.