Multiphysics modeling and simulation of ultra-thin channel Germanium on insulator (GeOI) MOSFETs

Wenchao Chen, Manxi Wang, W. Yin, Erping Li
{"title":"Multiphysics modeling and simulation of ultra-thin channel Germanium on insulator (GeOI) MOSFETs","authors":"Wenchao Chen, Manxi Wang, W. Yin, Erping Li","doi":"10.1109/EDAPS.2017.8276997","DOIUrl":null,"url":null,"abstract":"Multi-physical study of self-heating effect in GeOI MOSFET with 4nm channel thickness and 300nm channel length for digital integrated circuit is carried out by using finite element algorithm to solve carrier transport equations, Poisson equation, current continuity equations and thermal conduction equation. The simulated J-V curve is obtained by solving diffusive carrier transport equations. The time-dependent thermal conduction equation is solved to get the transient temperature response of the GeOI MOSFET. Due to the small size of the simulated structure, temperature response is in the scale of nanosecond according to our simulation results.","PeriodicalId":329279,"journal":{"name":"2017 IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDAPS.2017.8276997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Multi-physical study of self-heating effect in GeOI MOSFET with 4nm channel thickness and 300nm channel length for digital integrated circuit is carried out by using finite element algorithm to solve carrier transport equations, Poisson equation, current continuity equations and thermal conduction equation. The simulated J-V curve is obtained by solving diffusive carrier transport equations. The time-dependent thermal conduction equation is solved to get the transient temperature response of the GeOI MOSFET. Due to the small size of the simulated structure, temperature response is in the scale of nanosecond according to our simulation results.
超薄沟道锗绝缘体(GeOI) mosfet的多物理场建模与仿真
采用有限元算法求解载流子输运方程、泊松方程、电流连续性方程和热传导方程,对4nm沟道厚度、300nm沟道长度的数字集成电路GeOI MOSFET的自热效应进行了多物理研究。通过求解扩散载流子输运方程,得到了模拟的J-V曲线。求解了随时间变化的热传导方程,得到了GeOI MOSFET的瞬态温度响应。由于模拟结构的尺寸较小,根据我们的模拟结果,温度响应在纳秒级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信