Fingertip positioning and tracking by fusing multiple cues using particle filtering

Sheng-Ming Liang, Shih-Shinh Huang
{"title":"Fingertip positioning and tracking by fusing multiple cues using particle filtering","authors":"Sheng-Ming Liang, Shih-Shinh Huang","doi":"10.1109/ISCE.2013.6570186","DOIUrl":null,"url":null,"abstract":"We present a vision-based approach for positioning and tracking fingertip in a video. Multiple cues are fused through defining the likelihood probability terms in particle filtering framework. Skin color has been proven its robustness toward hand region localization in complex background. Thus, we describe it by a Gaussian distribution and further define a skin-color likelihood term. For lighting invariance, we also incorporate the contour information to define two contour likelihood terms. They respectively model the fingertip contour and two-side boundaries of finger. However, the particle filtering generally has degradation problem. To overcome this, we embed the mean shift to the particle filtering framework for convergence consideration. Finally, we validate the proposed approach by providing some experimental results.","PeriodicalId":442380,"journal":{"name":"2013 IEEE International Symposium on Consumer Electronics (ISCE)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Symposium on Consumer Electronics (ISCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCE.2013.6570186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We present a vision-based approach for positioning and tracking fingertip in a video. Multiple cues are fused through defining the likelihood probability terms in particle filtering framework. Skin color has been proven its robustness toward hand region localization in complex background. Thus, we describe it by a Gaussian distribution and further define a skin-color likelihood term. For lighting invariance, we also incorporate the contour information to define two contour likelihood terms. They respectively model the fingertip contour and two-side boundaries of finger. However, the particle filtering generally has degradation problem. To overcome this, we embed the mean shift to the particle filtering framework for convergence consideration. Finally, we validate the proposed approach by providing some experimental results.
指尖定位和跟踪融合多个线索使用粒子滤波
我们提出了一种基于视觉的方法来定位和跟踪视频中的指尖。在粒子滤波框架中,通过定义似然概率项来融合多个线索。肤色在复杂背景下对手部区域定位具有鲁棒性。因此,我们用高斯分布来描述它,并进一步定义肤色似然项。为了实现光照不变性,我们还结合轮廓信息定义了两个轮廓似然项。它们分别模拟了指尖轮廓和手指的两侧边界。然而,颗粒过滤普遍存在降解问题。为了克服这个问题,我们将均值漂移嵌入到粒子滤波框架中以考虑收敛性。最后,我们通过一些实验结果验证了所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信