Prediction of significant wave height in The Java Sea using Artificial Neural Network

I. Rizianiza, A. S. Aisjah
{"title":"Prediction of significant wave height in The Java Sea using Artificial Neural Network","authors":"I. Rizianiza, A. S. Aisjah","doi":"10.1109/ISITIA.2015.7219944","DOIUrl":null,"url":null,"abstract":"The Java Sea is one of the busiest ship traffic both of domestic and international shipping and potential marine accident is quite high. It is about 43.6% of marine accidents is caused by natural factor. There are two point in this research. Point 1 at latitude 5° 55'29.03\" S longitude 110°51'42.88\" E and point 2 at latitude 4°39'41.99\" S longitude 109°10'7.15\" E. Design predictor of significant wave height is using Artificial Neural Network with backpropagation algorithm. The predictor consists of three inputs. They are significant wave height (m); wind speed (m/s) and wind direction (degree). Architecture of Artificial Neural Network is point 1 [3, 6, 1] dan point 2 [3, 3, 1]. The result RMSE in this prediction are point 1 0.006 m; point 2 0.075 m.","PeriodicalId":124449,"journal":{"name":"2015 International Seminar on Intelligent Technology and Its Applications (ISITIA)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Seminar on Intelligent Technology and Its Applications (ISITIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISITIA.2015.7219944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The Java Sea is one of the busiest ship traffic both of domestic and international shipping and potential marine accident is quite high. It is about 43.6% of marine accidents is caused by natural factor. There are two point in this research. Point 1 at latitude 5° 55'29.03" S longitude 110°51'42.88" E and point 2 at latitude 4°39'41.99" S longitude 109°10'7.15" E. Design predictor of significant wave height is using Artificial Neural Network with backpropagation algorithm. The predictor consists of three inputs. They are significant wave height (m); wind speed (m/s) and wind direction (degree). Architecture of Artificial Neural Network is point 1 [3, 6, 1] dan point 2 [3, 3, 1]. The result RMSE in this prediction are point 1 0.006 m; point 2 0.075 m.
用人工神经网络预测爪哇海有效浪高
爪哇海是国内外船舶交通最繁忙的地区之一,发生海上事故的可能性很高。约43.6%的海上事故是由自然因素造成的。在这项研究中有两点。点1位于南纬5°55'29.03" S经度110°51'42.88" E,点2位于南纬4°39'41.99" S经度109°10'7.15" E,设计有效波高预测器使用反向传播算法的人工神经网络。预测器由三个输入组成。它们是显著波高(m);风速(m/s)、风向(度)。人工神经网络的结构为点1[3,6,1]和点2[3,3,1]。预测结果RMSE为1 0.006 m;2点0.075米。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信