Non-deterministic approach for hypercomplex orthogonal design (NAHOD)

D. Schulz, Markus Hager, J. Seitz
{"title":"Non-deterministic approach for hypercomplex orthogonal design (NAHOD)","authors":"D. Schulz, Markus Hager, J. Seitz","doi":"10.1109/ISWCS.2012.6328460","DOIUrl":null,"url":null,"abstract":"The Alamouti scheme is a well known coding form for providing transmit diversity in wireless communication scenarios and is, for example, used in the 3G standard. The generalization of this technique using quaternions, allowing to use e.g. polarization as another signal attribute for diversity, has been discussed in several publications. However, there is still the open question how to design such coding matrices. In this paper, we present a generalized form of hypercomplex numbers used as basis for our computation allowing to generalize the notation of complex numbers and quaternions. Moreover, we will discuss the structure of generalized orthogonal designs allowing us to realize a non-deterministic approach for generating such code matrices.","PeriodicalId":167119,"journal":{"name":"2012 International Symposium on Wireless Communication Systems (ISWCS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Symposium on Wireless Communication Systems (ISWCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISWCS.2012.6328460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Alamouti scheme is a well known coding form for providing transmit diversity in wireless communication scenarios and is, for example, used in the 3G standard. The generalization of this technique using quaternions, allowing to use e.g. polarization as another signal attribute for diversity, has been discussed in several publications. However, there is still the open question how to design such coding matrices. In this paper, we present a generalized form of hypercomplex numbers used as basis for our computation allowing to generalize the notation of complex numbers and quaternions. Moreover, we will discuss the structure of generalized orthogonal designs allowing us to realize a non-deterministic approach for generating such code matrices.
超复正交设计(NAHOD)的非确定性方法
Alamouti方案是一种众所周知的编码形式,用于在无线通信场景中提供传输分集,例如,用于3G标准。这种技术的推广使用四元数,允许使用例如极化作为多样性的另一个信号属性,已经在一些出版物中进行了讨论。然而,如何设计这样的编码矩阵仍然是一个悬而未决的问题。在本文中,我们给出了一种广义形式的超复数作为我们计算的基础,允许推广复数和四元数的符号。此外,我们将讨论广义正交设计的结构,使我们能够实现生成此类代码矩阵的非确定性方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信