{"title":"Towards a Pragmatic and Theory-Driven Framework for Multimodal Collaboration Feedback","authors":"M. Boothe, Collin Yu, Armanda Lewis, X. Ochoa","doi":"10.1145/3506860.3506898","DOIUrl":null,"url":null,"abstract":"This paper proposes an overarching framework for automated collaboration feedback that bridges theory and tool as well as technology and pedagogy. This pragmatic and theory-driven framework guides our thinking by outlining the components involved in converting theoretical collaboration constructs into features that can be automatically extracted and then converted into actionable feedback. Focusing on the pedagogical components of the framework, the constructs are validated by mapping them onto a selection of multi-disciplinary collaboration frameworks. The resulting behavioral indicators are then applied to measure collaboration in a sample scenario and those measurements are then used to exemplify how feedback analytics could be calculated. The paper concludes with a discussion on how those analytics could be converted into feedback for students and the next steps needed to advance the technological part of the framework.","PeriodicalId":185465,"journal":{"name":"LAK22: 12th International Learning Analytics and Knowledge Conference","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"LAK22: 12th International Learning Analytics and Knowledge Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3506860.3506898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This paper proposes an overarching framework for automated collaboration feedback that bridges theory and tool as well as technology and pedagogy. This pragmatic and theory-driven framework guides our thinking by outlining the components involved in converting theoretical collaboration constructs into features that can be automatically extracted and then converted into actionable feedback. Focusing on the pedagogical components of the framework, the constructs are validated by mapping them onto a selection of multi-disciplinary collaboration frameworks. The resulting behavioral indicators are then applied to measure collaboration in a sample scenario and those measurements are then used to exemplify how feedback analytics could be calculated. The paper concludes with a discussion on how those analytics could be converted into feedback for students and the next steps needed to advance the technological part of the framework.