Scalable Performance Prediction of Codes with Memory Hierarchy and Pipelines

Gopinath Chennupati, N. Santhi, S. Eidenbenz
{"title":"Scalable Performance Prediction of Codes with Memory Hierarchy and Pipelines","authors":"Gopinath Chennupati, N. Santhi, S. Eidenbenz","doi":"10.1145/3316480.3325518","DOIUrl":null,"url":null,"abstract":"We present the Analytical Memory Model with Pipelines (AMMP) of the Performance Prediction Toolkit (PPT). PPT-AMMP takes high-level source code and hardware architecture parameters as input, predicts runtime of that code on the target hardware platform, which is defined in the input parameters. PPT-AMMP transforms the code to an (architecture-independent) intermediate representation, then (i) analyzes the basic block structure of the code, (ii) processes architecture-independent virtual memory access patterns that it uses to build memory reuse distance distribution models for each basic block, (iii) runs detailed basic-block level simulations to determine hardware pipeline usage. Further, PPT-AMMP uses machine learning and regression techniques to build the prediction models based on small instances of the input code, then integrates into a higher-order discrete-event simulation model of PPT running on Simian PDES engine. We validate PPT-AMMP on four standard computational physics benchmarks, finally present a use case of hardware parameter sensitivity analysis to identify bottleneck hardware resources on different code inputs.","PeriodicalId":398793,"journal":{"name":"Proceedings of the 2019 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3316480.3325518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

We present the Analytical Memory Model with Pipelines (AMMP) of the Performance Prediction Toolkit (PPT). PPT-AMMP takes high-level source code and hardware architecture parameters as input, predicts runtime of that code on the target hardware platform, which is defined in the input parameters. PPT-AMMP transforms the code to an (architecture-independent) intermediate representation, then (i) analyzes the basic block structure of the code, (ii) processes architecture-independent virtual memory access patterns that it uses to build memory reuse distance distribution models for each basic block, (iii) runs detailed basic-block level simulations to determine hardware pipeline usage. Further, PPT-AMMP uses machine learning and regression techniques to build the prediction models based on small instances of the input code, then integrates into a higher-order discrete-event simulation model of PPT running on Simian PDES engine. We validate PPT-AMMP on four standard computational physics benchmarks, finally present a use case of hardware parameter sensitivity analysis to identify bottleneck hardware resources on different code inputs.
基于内存层次和管道的可伸缩代码性能预测
我们提出了性能预测工具包(PPT)的带有管道的分析记忆模型(AMMP)。pt - ammp将高级源代码和硬件体系结构参数作为输入,预测该代码在目标硬件平台上的运行时,这在输入参数中定义。pt - ammp将代码转换为(与体系结构无关的)中间表示,然后(i)分析代码的基本块结构,(ii)处理与体系结构无关的虚拟内存访问模式,用于为每个基本块构建内存重用距离分布模型,(iii)运行详细的基本块级模拟以确定硬件管道使用情况。此外,PPT- ammp利用机器学习和回归技术,基于输入代码的小实例构建预测模型,然后集成到运行在Simian PDES引擎上的PPT高阶离散事件仿真模型中。我们在四个标准计算物理基准上验证了pt - ammp,最后给出了硬件参数敏感性分析的用例,以识别不同代码输入上的瓶颈硬件资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信