{"title":"GM-PHD filter for multiple extended object tracking based on the multiplicative error shape model and network flow labeling","authors":"Florian Teich, Shishan Yang, M. Baum","doi":"10.1109/IVS.2017.7995691","DOIUrl":null,"url":null,"abstract":"In this work, we propose a novel implementation of the Probability Density Hypotheses (PHD) filter for tracking an unknown number of extended objects. For this purpose, we first show how a recently developed Kalman filter-based method for elliptic shape tracking can be embedded into the Gaussian Mixture PHD (GM-PHD) filter framework. Second, we propose a track labeling method based on a Minimum-Cost flow (MCF) formulation, which is inspired by tracking-by-detection algorithms from computer vision. In conjunction with the GM-PHD filter and using a dynamic-programming approach to solve the network flow problem, the overall method is able to achieve a consistent and efficient tracking of multiple extended objects. The benefits of the developed method are illustrated by means of simulated scenarios.","PeriodicalId":143367,"journal":{"name":"2017 IEEE Intelligent Vehicles Symposium (IV)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2017.7995691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In this work, we propose a novel implementation of the Probability Density Hypotheses (PHD) filter for tracking an unknown number of extended objects. For this purpose, we first show how a recently developed Kalman filter-based method for elliptic shape tracking can be embedded into the Gaussian Mixture PHD (GM-PHD) filter framework. Second, we propose a track labeling method based on a Minimum-Cost flow (MCF) formulation, which is inspired by tracking-by-detection algorithms from computer vision. In conjunction with the GM-PHD filter and using a dynamic-programming approach to solve the network flow problem, the overall method is able to achieve a consistent and efficient tracking of multiple extended objects. The benefits of the developed method are illustrated by means of simulated scenarios.