Application Specific Integrated Gate-Drive Circuit for Driving Self-Oscillating Gallium Nitride & Logic-Level Power Transistors

Jacob E. F. Overgaard, J. C. Hertel, J. Pejtersen, A. Knott
{"title":"Application Specific Integrated Gate-Drive Circuit for Driving Self-Oscillating Gallium Nitride & Logic-Level Power Transistors","authors":"Jacob E. F. Overgaard, J. C. Hertel, J. Pejtersen, A. Knott","doi":"10.1109/NORCHIP.2018.8573497","DOIUrl":null,"url":null,"abstract":"Wide bandgap power semiconductors are key enablers for increasing the power density of switch-mode power supplies. However, they require new gate drive technologies. This paper examines and characterizes a fabricated gate-driver in a class-E resonant inverter. The gate-driver’s total area of 1.2mm2 includes two high-voltage transistors for gate-driving, integrated complementary metal-oxide-semiconductor (CMOS) gate-drivers, high-speed floating level-shifter and reset circuitry. A prototype printed circuit board (PCB) was designed to assess the implications of an electrostatic discharge (ESD) diode, its parasitic capacitance and package bondwire connections. The parasitic capacitance was estimated using its discharge time from an initial voltage and the capacitance is 56.7 pF. Both bondwires and the diode’s parasitic capacitance is neglegible. The gate-driver’s functional behaviour is validated using a parallel LC resonant tank resembling a self-oscillating gate-drive. Measurements and simulations show the ESD diode clamps the output voltage to a minimum of –2V.","PeriodicalId":152077,"journal":{"name":"2018 IEEE Nordic Circuits and Systems Conference (NORCAS): NORCHIP and International Symposium of System-on-Chip (SoC)","volume":"79 8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Nordic Circuits and Systems Conference (NORCAS): NORCHIP and International Symposium of System-on-Chip (SoC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NORCHIP.2018.8573497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Wide bandgap power semiconductors are key enablers for increasing the power density of switch-mode power supplies. However, they require new gate drive technologies. This paper examines and characterizes a fabricated gate-driver in a class-E resonant inverter. The gate-driver’s total area of 1.2mm2 includes two high-voltage transistors for gate-driving, integrated complementary metal-oxide-semiconductor (CMOS) gate-drivers, high-speed floating level-shifter and reset circuitry. A prototype printed circuit board (PCB) was designed to assess the implications of an electrostatic discharge (ESD) diode, its parasitic capacitance and package bondwire connections. The parasitic capacitance was estimated using its discharge time from an initial voltage and the capacitance is 56.7 pF. Both bondwires and the diode’s parasitic capacitance is neglegible. The gate-driver’s functional behaviour is validated using a parallel LC resonant tank resembling a self-oscillating gate-drive. Measurements and simulations show the ESD diode clamps the output voltage to a minimum of –2V.
用于驱动自振荡氮化镓及逻辑级功率晶体管的专用集成门驱动电路
宽带隙功率半导体是提高开关模式电源功率密度的关键因素。然而,它们需要新的栅极驱动技术。本文对e类谐振逆变器中的一种自制栅极驱动器进行了研究和表征。栅极驱动器的总面积为1.2mm2,包括两个用于栅极驱动的高压晶体管,集成的互补金属氧化物半导体(CMOS)栅极驱动器,高速浮动电平移位器和复位电路。设计了一个原型印刷电路板(PCB)来评估静电放电(ESD)二极管、其寄生电容和封装键合线连接的影响。寄生电容由初始电压放电时间估计,电容为56.7 pF,键合线和二极管的寄生电容都可以忽略不计。栅极驱动器的功能行为是通过一个类似于自振荡栅极驱动器的并联LC谐振槽来验证的。测量和仿真表明,ESD二极管将输出电压箝位到最小-2V。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信