A Graph-based Error Correction Model Using Lie-algebraic Cohomology and Its Application on Global Consistent Indoor Scene Reconstruction

Yuxue Ren, Baowei Jiang, Wei Chen, Na Lei, X. Gu
{"title":"A Graph-based Error Correction Model Using Lie-algebraic Cohomology and Its Application on Global Consistent Indoor Scene Reconstruction","authors":"Yuxue Ren, Baowei Jiang, Wei Chen, Na Lei, X. Gu","doi":"10.1109/VRW58643.2023.00277","DOIUrl":null,"url":null,"abstract":"We present a novel, effective method for global indoor scene reconstruction problems by geometric topology. Based on point cloud pairwise registration methods (e.g ICP) or IMU, we focus on the problem of accumulated error for the composition of transformations along any loops. The major technical contribution of this paper is a linear method for the graph optimation, using only solving a Poisson equation. We demonstrate the consistency of our method from Hodge-Helmhotz decomposition theorem and experiments on multiple RGBD datasets of indoor scene. The experimental results also demonstrate that our global registration method runs quickly and provides accurate reconstructions.","PeriodicalId":412598,"journal":{"name":"2023 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VRW58643.2023.00277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a novel, effective method for global indoor scene reconstruction problems by geometric topology. Based on point cloud pairwise registration methods (e.g ICP) or IMU, we focus on the problem of accumulated error for the composition of transformations along any loops. The major technical contribution of this paper is a linear method for the graph optimation, using only solving a Poisson equation. We demonstrate the consistency of our method from Hodge-Helmhotz decomposition theorem and experiments on multiple RGBD datasets of indoor scene. The experimental results also demonstrate that our global registration method runs quickly and provides accurate reconstructions.
基于lie -代数上同的图误差校正模型及其在室内场景全局一致重建中的应用
提出了一种基于几何拓扑的室内场景全局重建方法。基于点云配对配准方法(如ICP)或IMU,我们重点研究了任意循环变换组合的累积误差问题。本文的主要技术贡献是一种只用解泊松方程的线性图优化方法。我们从Hodge-Helmhotz分解定理和室内场景的多个RGBD数据集上的实验证明了我们的方法的一致性。实验结果表明,该方法运行速度快,重建结果准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信