Novel Ant Colony Optimization algorithm with Path Crossover and heterogeneous ants for path planning

Joon-Woo Lee, Jujang Lee
{"title":"Novel Ant Colony Optimization algorithm with Path Crossover and heterogeneous ants for path planning","authors":"Joon-Woo Lee, Jujang Lee","doi":"10.1109/ICIT.2010.5472739","DOIUrl":null,"url":null,"abstract":"In this paper, a novel ACO algorithm is proposed to solve the global path planning problems, called Heterogeneous ACO (HACO) algorithm. We study to improve the performance and to optimize the algorithm for the global path panning of the mobile robot. The HACO algorithm differs from the Conventional ACO (CACO) algorithm for the path planning in three respects. We modify the Transition Probability Function (TPF) and the Pheromone Update Rule (PUR). In the PUR, we newly introduced the Path Crossover (PC). We also propose the first introduction of the heterogeneous ants in the ACO algorithm. In the simulation, we apply the proposed HACO algorithm to general path planning problems. At the last, we compare the performance with the CACO algorithm.","PeriodicalId":256385,"journal":{"name":"2010 IEEE International Conference on Industrial Technology","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Industrial Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2010.5472739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

In this paper, a novel ACO algorithm is proposed to solve the global path planning problems, called Heterogeneous ACO (HACO) algorithm. We study to improve the performance and to optimize the algorithm for the global path panning of the mobile robot. The HACO algorithm differs from the Conventional ACO (CACO) algorithm for the path planning in three respects. We modify the Transition Probability Function (TPF) and the Pheromone Update Rule (PUR). In the PUR, we newly introduced the Path Crossover (PC). We also propose the first introduction of the heterogeneous ants in the ACO algorithm. In the simulation, we apply the proposed HACO algorithm to general path planning problems. At the last, we compare the performance with the CACO algorithm.
基于路径交叉和异构蚁群的新型蚁群路径规划算法
本文提出了一种解决全局路径规划问题的新型蚁群算法——异构蚁群算法(HACO)。为了提高移动机器人全局路径规划的性能,对算法进行了优化研究。HACO算法在路径规划方面与传统蚁群算法(CACO)有三个不同之处。我们修改了转移概率函数(TPF)和信息素更新规则(PUR)。在PUR中,我们新推出了路径交叉(PC)。我们还首次在蚁群算法中引入了异构蚂蚁。在仿真中,我们将提出的HACO算法应用于一般路径规划问题。最后,将该算法与CACO算法进行性能比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信