Taro Nakano, B. T. Nukala, J. Tsay, S. Zupancic, Amanda Rodriguez, D. Lie, Jerry Lopez, Tam Q. Nguyen
{"title":"Gaits classification of normal vs. patients by wireless gait sensor and Support Vector Machine (SVM) classifier","authors":"Taro Nakano, B. T. Nukala, J. Tsay, S. Zupancic, Amanda Rodriguez, D. Lie, Jerry Lopez, Tam Q. Nguyen","doi":"10.4018/IJSI.2017010102","DOIUrl":null,"url":null,"abstract":"Due to the serious concerns of fall risks for patients with balance disorders, it is desirable to be able to objectively identify these patients in real-time dynamic gait testing using inexpensive wearable sensors. In this work, we took a total of 49 gait tests from 7 human subjects (3 normal subjects and 4 patients), where each person performed 7 Dynamic Gait Index (DGI) tests by wearing a wireless gait sensor on the T4 thoracic vertebra. The raw gait data is wirelessly transmitted to a near-by PC for real-time gait data collection. To objectively identify the patients from the gait data, we used 4 different types of Support Vector Machine (SVM) classifiers based on the 6 features extracted from the raw gait data: Linear SVM, Quadratic SVM, Cubic SVM, and Gaussian SVM. The Linear SVM, Quadratic SVM and Cubic SVM all achieved impressive 98% classification accuracy, with 95.2% sensitivity and 100% specificity in this work. However, the Gaussian SVM classifier only achieved 87.8% accuracy, 71.7% sensitivity, and 100% specificity. The results obtained with this small number of human subjects indicates that in the near future, we should be able to objectively identify balance-disorder patients from normal subjects during real-time dynamic gaits testing using intelligent SVM classifiers.","PeriodicalId":336322,"journal":{"name":"2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJSI.2017010102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26
Abstract
Due to the serious concerns of fall risks for patients with balance disorders, it is desirable to be able to objectively identify these patients in real-time dynamic gait testing using inexpensive wearable sensors. In this work, we took a total of 49 gait tests from 7 human subjects (3 normal subjects and 4 patients), where each person performed 7 Dynamic Gait Index (DGI) tests by wearing a wireless gait sensor on the T4 thoracic vertebra. The raw gait data is wirelessly transmitted to a near-by PC for real-time gait data collection. To objectively identify the patients from the gait data, we used 4 different types of Support Vector Machine (SVM) classifiers based on the 6 features extracted from the raw gait data: Linear SVM, Quadratic SVM, Cubic SVM, and Gaussian SVM. The Linear SVM, Quadratic SVM and Cubic SVM all achieved impressive 98% classification accuracy, with 95.2% sensitivity and 100% specificity in this work. However, the Gaussian SVM classifier only achieved 87.8% accuracy, 71.7% sensitivity, and 100% specificity. The results obtained with this small number of human subjects indicates that in the near future, we should be able to objectively identify balance-disorder patients from normal subjects during real-time dynamic gaits testing using intelligent SVM classifiers.