Tracking moving objects with co-evolutionary snakes

P. Liatsis, C. Ooi
{"title":"Tracking moving objects with co-evolutionary snakes","authors":"P. Liatsis, C. Ooi","doi":"10.1109/VIPROM.2002.1026677","DOIUrl":null,"url":null,"abstract":"A new symbiotic genetic algorithm (SGA) based active contour model (snake) is proposed to track the B-spline contour of obstacles. It exploits the local control properties of the B-spline to decompose the contour into subcontours and optimizes each subcontour in separate genetic algorithms (GA). Unlike the GA-based snake, an SGA snake can track the obstacle's outline more robustly. Application-specific inter-population genetic operators are introduced to reinforce the symbiotic relationship via migration of genetic material. The use of symbiosis dramatically reduces the combinatorics of the search space, when compared to GAs. Results of tracking objects in real road scenarios demonstrate its robustness to noise and stability of convergence when compared to its GA counterpart.","PeriodicalId":223771,"journal":{"name":"International Symposium on VIPromCom Video/Image Processing and Multimedia Communications","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on VIPromCom Video/Image Processing and Multimedia Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VIPROM.2002.1026677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A new symbiotic genetic algorithm (SGA) based active contour model (snake) is proposed to track the B-spline contour of obstacles. It exploits the local control properties of the B-spline to decompose the contour into subcontours and optimizes each subcontour in separate genetic algorithms (GA). Unlike the GA-based snake, an SGA snake can track the obstacle's outline more robustly. Application-specific inter-population genetic operators are introduced to reinforce the symbiotic relationship via migration of genetic material. The use of symbiosis dramatically reduces the combinatorics of the search space, when compared to GAs. Results of tracking objects in real road scenarios demonstrate its robustness to noise and stability of convergence when compared to its GA counterpart.
用共同进化的蛇追踪移动的物体
提出了一种新的基于共生遗传算法(SGA)的活动轮廓模型(蛇形)来跟踪障碍物的b样条轮廓。该算法利用b样条的局部控制特性,将轮廓分解为子轮廓,并利用单独的遗传算法对每个子轮廓进行优化。与基于遗传算法的蛇不同,SGA蛇可以更稳健地跟踪障碍物的轮廓。引入特定应用的种群间遗传算子,通过遗传物质的迁移来加强共生关系。与GAs相比,共生的使用极大地减少了搜索空间的组合。实际道路场景下的目标跟踪结果表明,与遗传算法相比,该算法对噪声具有鲁棒性和收敛稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信