{"title":"Analyzing the effectiveness of multiple-detect test sets","authors":"R. D. Blanton, K. N. Dwarakanath, A. Shah","doi":"10.1109/TEST.2003.1271073","DOIUrl":null,"url":null,"abstract":"Multiple-detect test sets have been shown to be effective in lowering defect level. Other researchers have noted that observing the effects of a defect can be controlled by sensitizing affected sites to circuit outputs but defect excitation is inherently probabilistic given a defect’s inherent, unknown nature. As a result, test sets that sensitize every signal line multiple times with varying circuit state has a greater probability of detecting a defect. In past work, the entire circuit is considered when varying circuit state from one vector to another for a given signal line. However, it may be possible to improve defect excitation by exploiting the localized nature of many defect types. Spec$cally, by varying circuit state in the physical region or neighborhood surrounding a line affected by a defect, the defect excitation and therefore detection can be improved. In this paper, we present a method for extracting a physical region surrounding a signal line but more importantly, techniques for analyzing the excitation characteristics of the region. Analysis of 4-detect test sets reveals that 30% to 60% of signal line regions do not achieve at least four unique states, indicating opportunity to further reduce defect level.","PeriodicalId":236182,"journal":{"name":"International Test Conference, 2003. Proceedings. ITC 2003.","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Test Conference, 2003. Proceedings. ITC 2003.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TEST.2003.1271073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57
Abstract
Multiple-detect test sets have been shown to be effective in lowering defect level. Other researchers have noted that observing the effects of a defect can be controlled by sensitizing affected sites to circuit outputs but defect excitation is inherently probabilistic given a defect’s inherent, unknown nature. As a result, test sets that sensitize every signal line multiple times with varying circuit state has a greater probability of detecting a defect. In past work, the entire circuit is considered when varying circuit state from one vector to another for a given signal line. However, it may be possible to improve defect excitation by exploiting the localized nature of many defect types. Spec$cally, by varying circuit state in the physical region or neighborhood surrounding a line affected by a defect, the defect excitation and therefore detection can be improved. In this paper, we present a method for extracting a physical region surrounding a signal line but more importantly, techniques for analyzing the excitation characteristics of the region. Analysis of 4-detect test sets reveals that 30% to 60% of signal line regions do not achieve at least four unique states, indicating opportunity to further reduce defect level.