A hardware architecture of face detection for human-robot interaction and its implementation

Sang-Seol Lee, Sung-Joon Jang, Jungho Kim, Byeong-Ho Choi
{"title":"A hardware architecture of face detection for human-robot interaction and its implementation","authors":"Sang-Seol Lee, Sung-Joon Jang, Jungho Kim, Byeong-Ho Choi","doi":"10.1109/ICCE-ASIA.2016.7804752","DOIUrl":null,"url":null,"abstract":"This paper presents hardware architecture with low-complexity face detection (FD) and parallel processing of local binary pattern (LBP) generation and adaptive boosting (AdaBoost) algorithm using Haar features for the intelligent service robot system. We designed a fully pipelined architecture implemented with the design techniques, such as variable image scaling and parallel processing multiple classifiers without integral image generation, on the FPGA platform. The proposed architecture enables a real-time FD processing for a VGA video at 30 frames per second.","PeriodicalId":229557,"journal":{"name":"2016 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-ASIA.2016.7804752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper presents hardware architecture with low-complexity face detection (FD) and parallel processing of local binary pattern (LBP) generation and adaptive boosting (AdaBoost) algorithm using Haar features for the intelligent service robot system. We designed a fully pipelined architecture implemented with the design techniques, such as variable image scaling and parallel processing multiple classifiers without integral image generation, on the FPGA platform. The proposed architecture enables a real-time FD processing for a VGA video at 30 frames per second.
面向人机交互的人脸检测硬件体系结构及其实现
提出了基于Haar特征的低复杂度人脸检测(FD)和并行处理局部二值模式(LBP)生成和自适应增强(AdaBoost)算法的智能服务机器人系统硬件架构。我们在FPGA平台上设计了一个完全流水线的架构,实现了可变图像缩放和并行处理多个分类器而不生成集成图像等设计技术。所提出的架构能够以每秒30帧的速度对VGA视频进行实时FD处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信