Color image clustering segmentation based on SMCL for mobile robot

Chengwan An, Xiaoming Xiong, Yuequan Yang, M. Tan
{"title":"Color image clustering segmentation based on SMCL for mobile robot","authors":"Chengwan An, Xiaoming Xiong, Yuequan Yang, M. Tan","doi":"10.1109/RAMECH.2004.1438087","DOIUrl":null,"url":null,"abstract":"For conventional clustering segmentation of a color image, it is necessary to predetermine cluster number and centers of the color image. If they are not appropriately predetermined, results of segmentation may become considerably worse. To fulfill unsupervised clustering segmentation of visual color images for a mobile robot, this paper proposes a multiprototypes-take-one-cluster (MPTOC) strategy and splitting-merging competitive learning (SMCL). Based on MPTOC, SMCL can adaptively detect the appropriate cluster number of color images. An experiment on the mobile robot CASIA-1 validates MPTOC and SMCL.","PeriodicalId":252964,"journal":{"name":"IEEE Conference on Robotics, Automation and Mechatronics, 2004.","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Conference on Robotics, Automation and Mechatronics, 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAMECH.2004.1438087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For conventional clustering segmentation of a color image, it is necessary to predetermine cluster number and centers of the color image. If they are not appropriately predetermined, results of segmentation may become considerably worse. To fulfill unsupervised clustering segmentation of visual color images for a mobile robot, this paper proposes a multiprototypes-take-one-cluster (MPTOC) strategy and splitting-merging competitive learning (SMCL). Based on MPTOC, SMCL can adaptively detect the appropriate cluster number of color images. An experiment on the mobile robot CASIA-1 validates MPTOC and SMCL.
基于SMCL的移动机器人彩色图像聚类分割
对于传统的彩色图像聚类分割,需要预先确定彩色图像的聚类数和聚类中心。如果它们没有适当地预先确定,分割结果可能会变得相当糟糕。为了实现移动机器人视觉彩色图像的无监督聚类分割,提出了多原型-取一聚类(MPTOC)和分裂合并竞争学习(SMCL)策略。基于MPTOC, SMCL可以自适应地检测出合适的彩色图像簇数。在移动机器人CASIA-1上的实验验证了MPTOC和SMCL的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信