{"title":"A soft switching three-phase three-switch buck rectifier","authors":"N. Noroozi, M. Zolghadri, R. Haghi","doi":"10.1109/EPEC.2010.5697220","DOIUrl":null,"url":null,"abstract":"In this paper a novel soft switching three-phase pulse width modulation (PWM) rectifier is proposed. Various switching state sequences of a three-phase three-switch buck-type unity power factor rectifier are reviewed and the operation modes of the converter are explained and analyzed. The converter operates under zero current switching (ZCS) condition. By using an auxiliary circuit with a simple method of energy recovery, the current is diverted away from the main power switches before they are to be turned off; so, switching losses in the converter are reduced. The auxiliary circuit consists of two auxiliary switches and a resonant inductance-capacitance circuit connected to the auxiliary switches. The proper operation of the converter is confirmed by the results obtained from the digital simulations.","PeriodicalId":393869,"journal":{"name":"2010 IEEE Electrical Power & Energy Conference","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Electrical Power & Energy Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEC.2010.5697220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
In this paper a novel soft switching three-phase pulse width modulation (PWM) rectifier is proposed. Various switching state sequences of a three-phase three-switch buck-type unity power factor rectifier are reviewed and the operation modes of the converter are explained and analyzed. The converter operates under zero current switching (ZCS) condition. By using an auxiliary circuit with a simple method of energy recovery, the current is diverted away from the main power switches before they are to be turned off; so, switching losses in the converter are reduced. The auxiliary circuit consists of two auxiliary switches and a resonant inductance-capacitance circuit connected to the auxiliary switches. The proper operation of the converter is confirmed by the results obtained from the digital simulations.