Fast and robust 3D face matching approach

Ye Pan, Bo Dai, Q. Peng
{"title":"Fast and robust 3D face matching approach","authors":"Ye Pan, Bo Dai, Q. Peng","doi":"10.1109/IASP.2010.5476132","DOIUrl":null,"url":null,"abstract":"We present a novel three-dimensional (3D) face matching approach in this paper. First, 3D facial scans are segmented and four feature points of each face are detected for rough alignment the by Absolute Orientation method. Then a modified Iterative Closest Point (ICP) algorithm is employed for range image registration. A Simulated Annealing (SA) based approach with the Surface Interpenetration Measure (SIM), as similarity measure, is used for final matching. Our experimental results on the Face Recognition Grand Challenge (FRGC) v2 database show that the proposed method could achieve 99% rank one recognition performance at 0.001 False Acceptance Rate (FAR) on all neutral expression with noisy data.","PeriodicalId":223866,"journal":{"name":"2010 International Conference on Image Analysis and Signal Processing","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Image Analysis and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IASP.2010.5476132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We present a novel three-dimensional (3D) face matching approach in this paper. First, 3D facial scans are segmented and four feature points of each face are detected for rough alignment the by Absolute Orientation method. Then a modified Iterative Closest Point (ICP) algorithm is employed for range image registration. A Simulated Annealing (SA) based approach with the Surface Interpenetration Measure (SIM), as similarity measure, is used for final matching. Our experimental results on the Face Recognition Grand Challenge (FRGC) v2 database show that the proposed method could achieve 99% rank one recognition performance at 0.001 False Acceptance Rate (FAR) on all neutral expression with noisy data.
快速鲁棒的3D人脸匹配方法
本文提出了一种新的三维人脸匹配方法。首先,对三维人脸扫描图像进行分割,检测每个人脸的四个特征点,采用绝对定向方法进行粗对齐;然后采用改进的迭代最近点(ICP)算法进行距离图像配准。采用基于模拟退火(SA)的方法,以表面渗透测度(SIM)作为相似性测度,进行最终匹配。我们在人脸识别大挑战(FRGC) v2数据库上的实验结果表明,该方法在0.001的错误接受率(FAR)下,对所有带有噪声数据的中性表情都能达到99%的一级识别性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信