An objective method to find better RBF networks in classification

H. Sug
{"title":"An objective method to find better RBF networks in classification","authors":"H. Sug","doi":"10.1109/ICCIT.2010.5711086","DOIUrl":null,"url":null,"abstract":"RBF networks are good at prediction tasks of data mining, and k-means clustering algorithm is one of the mostly used clustering algorithms for basis functions of RBF networks. K-means clustering algorithm needs the number of clusters for initialization, and depending on the number of clusters, the accuracy of RBF networks change. But we cannot resort to increasing the number of clusters in the RBF networks in sequential manner, because we have limited computing resources. This paper suggests an objective and systematic approach using decision tree in determining a proper number of clusters to find good RBF networks with respect to accuracy. Experiments with two different data sets showed very promising results.","PeriodicalId":131337,"journal":{"name":"5th International Conference on Computer Sciences and Convergence Information Technology","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"5th International Conference on Computer Sciences and Convergence Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIT.2010.5711086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

RBF networks are good at prediction tasks of data mining, and k-means clustering algorithm is one of the mostly used clustering algorithms for basis functions of RBF networks. K-means clustering algorithm needs the number of clusters for initialization, and depending on the number of clusters, the accuracy of RBF networks change. But we cannot resort to increasing the number of clusters in the RBF networks in sequential manner, because we have limited computing resources. This paper suggests an objective and systematic approach using decision tree in determining a proper number of clusters to find good RBF networks with respect to accuracy. Experiments with two different data sets showed very promising results.
一种寻找较好的RBF网络分类的客观方法
RBF网络擅长数据挖掘的预测任务,k-means聚类算法是RBF网络基函数最常用的聚类算法之一。K-means聚类算法需要初始化的聚类个数,随着聚类个数的增加,RBF网络的准确率会发生变化。但是我们不能采用顺序方式增加RBF网络中的集群数量,因为我们的计算资源有限。本文提出了一种客观、系统的方法,利用决策树来确定适当的聚类数量,以找到较好的RBF网络。用两个不同的数据集进行的实验显示了非常有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信