Approximation Trade Offs in an Image-Based Control System

S. De, S. Mohamed, Konstantinos Bimpisidis, Dip Goswami, T. Basten, H. Corporaal
{"title":"Approximation Trade Offs in an Image-Based Control System","authors":"S. De, S. Mohamed, Konstantinos Bimpisidis, Dip Goswami, T. Basten, H. Corporaal","doi":"10.23919/DATE48585.2020.9116552","DOIUrl":null,"url":null,"abstract":"Image-based control (IBC) systems use camera sensor(s) to perceive the environment. The inherent compute-heavy nature of image processing causes long processing delay that negatively influences the performance of the IBC systems. Our idea is to reduce the long delay using coarse-grained approximation of the image signal processing pipeline without affecting the functionality and performance of the IBC system. The question is: how is the degree of approximation related to the closed-loop quality-of-control (QoC), memory utilization and energy consumption? We present a software-in-the-loop (SiL) evaluation framework for the above approximation-in-the-loop system. We identify the error resilient stages and the corresponding coarse-grained approximation settings for the IBC system. We perform trade off analysis between the QoC, memory utilisation and energy consumption for varying degrees of coarse-grained approximation. We demonstrate the effectiveness of our approach using a concrete case study of a lane keeping assist system (LKAS). We obtain energy and memory reduction of upto 84% and 29% respectively, for 28% QoC improvements.","PeriodicalId":289525,"journal":{"name":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE48585.2020.9116552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Image-based control (IBC) systems use camera sensor(s) to perceive the environment. The inherent compute-heavy nature of image processing causes long processing delay that negatively influences the performance of the IBC systems. Our idea is to reduce the long delay using coarse-grained approximation of the image signal processing pipeline without affecting the functionality and performance of the IBC system. The question is: how is the degree of approximation related to the closed-loop quality-of-control (QoC), memory utilization and energy consumption? We present a software-in-the-loop (SiL) evaluation framework for the above approximation-in-the-loop system. We identify the error resilient stages and the corresponding coarse-grained approximation settings for the IBC system. We perform trade off analysis between the QoC, memory utilisation and energy consumption for varying degrees of coarse-grained approximation. We demonstrate the effectiveness of our approach using a concrete case study of a lane keeping assist system (LKAS). We obtain energy and memory reduction of upto 84% and 29% respectively, for 28% QoC improvements.
基于图像的控制系统中的近似权衡
基于图像的控制(IBC)系统使用相机传感器来感知环境。图像处理固有的计算量大的特性导致了较长的处理延迟,这对IBC系统的性能产生了负面影响。我们的想法是在不影响IBC系统功能和性能的情况下,使用图像信号处理管道的粗粒度近似来减少长延迟。问题是:近似程度如何与闭环控制质量(QoC)、内存利用率和能耗相关?我们提出了一个软件在环(SiL)评估框架,用于上述在环近似系统。我们确定了IBC系统的误差弹性阶段和相应的粗粒度近似设置。我们对不同程度的粗粒度近似执行QoC、内存利用率和能耗之间的权衡分析。我们使用车道保持辅助系统(LKAS)的具体案例研究来证明我们方法的有效性。我们获得能量和内存分别减少高达84%和29%,改善28%的QoC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信