FPGA Implementation of Interval Type-2 Fuzzy System Based on Nie-Tan Algorithm

R. Maciel, R. Moreno, T. Pimenta, P. Rizol
{"title":"FPGA Implementation of Interval Type-2 Fuzzy System Based on Nie-Tan Algorithm","authors":"R. Maciel, R. Moreno, T. Pimenta, P. Rizol","doi":"10.1109/ICM50269.2020.9331498","DOIUrl":null,"url":null,"abstract":"The Interval Type-2 Fuzzy Logic Systems – IT2FLS processors have been widely used in control processes that analyzes uncertain information. The IT2FLS presents a superior performance compared to other methods for high uncertainty applications. In real-time control applications, circuit parallelism strategies increase the number of Fuzzy Logic Inference Per Second (FLIPS). This technique demands more hardware resources compared to sequential processing, which can make it difficult to use platforms that have resource limitations. This article presents an IT2FLS architecture implementation minimizes the use of parallel processing in the implementation in the inference engine and maintains the amount of FLIPS suitable for real-time applications. The proposed IT2FLS architecture is implemented in FPGA. It uses the type reduction circuits based on Nie-Tan algorithm. The hardware consists of two 8-bit inputs with four Gaussian membership functions for each one, sixteen rules and an 8-bit output with seven membership functions. The results of the FPGA implementation are compared with the same architecture implemented in Matlab® using the Toolbox for type-2 fuzzy.","PeriodicalId":243968,"journal":{"name":"2020 32nd International Conference on Microelectronics (ICM)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 32nd International Conference on Microelectronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM50269.2020.9331498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Interval Type-2 Fuzzy Logic Systems – IT2FLS processors have been widely used in control processes that analyzes uncertain information. The IT2FLS presents a superior performance compared to other methods for high uncertainty applications. In real-time control applications, circuit parallelism strategies increase the number of Fuzzy Logic Inference Per Second (FLIPS). This technique demands more hardware resources compared to sequential processing, which can make it difficult to use platforms that have resource limitations. This article presents an IT2FLS architecture implementation minimizes the use of parallel processing in the implementation in the inference engine and maintains the amount of FLIPS suitable for real-time applications. The proposed IT2FLS architecture is implemented in FPGA. It uses the type reduction circuits based on Nie-Tan algorithm. The hardware consists of two 8-bit inputs with four Gaussian membership functions for each one, sixteen rules and an 8-bit output with seven membership functions. The results of the FPGA implementation are compared with the same architecture implemented in Matlab® using the Toolbox for type-2 fuzzy.
基于Nie-Tan算法的区间2型模糊系统的FPGA实现
区间2型模糊逻辑系统- IT2FLS处理器已广泛应用于分析不确定信息的控制过程。与其他方法相比,IT2FLS在高不确定度应用中表现出优越的性能。在实时控制应用中,电路并行策略增加了每秒模糊逻辑推理(FLIPS)的数量。与顺序处理相比,该技术需要更多的硬件资源,这使得难以使用具有资源限制的平台。本文提出了一种IT2FLS架构实现,该实现在推理引擎中最大限度地减少了并行处理的使用,并保持了适合实时应用程序的flip数量。提出的IT2FLS架构在FPGA上实现。采用基于Nie-Tan算法的类型约简电路。硬件包括两个8位输入,每个输入有四个高斯隶属函数,16条规则和一个8位输出,七个隶属函数。将FPGA实现的结果与使用2型模糊工具箱在Matlab®中实现的相同架构进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信