Time Series Representation using TS2Vec on Smartwatch Sensor Data for Fatigue Estimation

Adria Mallol - Ragolta, M. Maniadakis, George Papadopoulos, B. Schuller
{"title":"Time Series Representation using TS2Vec on Smartwatch Sensor Data for Fatigue Estimation","authors":"Adria Mallol - Ragolta, M. Maniadakis, George Papadopoulos, B. Schuller","doi":"10.54941/ahfe1002147","DOIUrl":null,"url":null,"abstract":"This work investigates the use of TS2Vec time series representations in an end-to-end approach to detect the fatigue levels perceived by workers of the transportation and logistics industry from the analysis of the accelerometer and the heart rate measurements sensed using a Garmin Vivoactive 3 device. The experiments are conducted using the dataset collected during a pre-pilot study with a total of 1 h 22 min 20 sec of data available. The results obtained support the use of TS2Vec representations for the task at hand, as the binary model trained using this approach and exploiting the heart rate modality obtains the best performance with an Unweighted Average Recall of 67.1 %.","PeriodicalId":402751,"journal":{"name":"Human Factors and Systems Interaction","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Factors and Systems Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54941/ahfe1002147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work investigates the use of TS2Vec time series representations in an end-to-end approach to detect the fatigue levels perceived by workers of the transportation and logistics industry from the analysis of the accelerometer and the heart rate measurements sensed using a Garmin Vivoactive 3 device. The experiments are conducted using the dataset collected during a pre-pilot study with a total of 1 h 22 min 20 sec of data available. The results obtained support the use of TS2Vec representations for the task at hand, as the binary model trained using this approach and exploiting the heart rate modality obtains the best performance with an Unweighted Average Recall of 67.1 %.
基于TS2Vec的智能手表传感器疲劳估计时间序列表示
这项工作研究了TS2Vec时间序列表示在端到端方法中的使用,通过分析使用Garmin Vivoactive 3设备检测的加速度计和心率测量值,来检测运输和物流行业工人感知到的疲劳水平。实验使用在预试点研究期间收集的数据集进行,总共有1小时22分20秒的可用数据。得到的结果支持使用TS2Vec表示来处理手头的任务,因为使用这种方法和利用心率模态训练的二值模型获得了最佳性能,未加权平均召回率为67.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信