Abdominal MRI Synthesis using StyleGAN2-ADA

B. Gonçalves, Pedro Vieira, Ana Vieira
{"title":"Abdominal MRI Synthesis using StyleGAN2-ADA","authors":"B. Gonçalves, Pedro Vieira, Ana Vieira","doi":"10.23919/IST-Africa60249.2023.10187755","DOIUrl":null,"url":null,"abstract":"The lack of labelled medical data still poses as one of the biggest issues when creating Deep Learning models in the medical field. Modern data augmentation techniques like the generation of synthetic images have gained a special interest. In recent years there has been a significant improvement in GANs. StyleGAN2 achieves impressive results in the generation of natural images. StyleGAN2-ADA was created to respond to the lack of training data when training an image synthesis model, which is very frequent in the medical field. Some works used styleGAN to generate melanomas, breast cancer histological images, MR and CT images. In this work we apply, for the first time, a styleGAN2-ADA to a small dataset of abdominal MRI with 1.3k images. From the augmentation pipeline created by the authors of styleGAN2-ADA, we removed all augmentations except the geometric transformations and pixel blitting operations. We trained our network for 70 hours. Our generated dataset has a precision score of 59,33 % and a FID score of 18,14. We conclude that the styleGAN2-ADA is a viable solution to generate MRI using a small dataset.","PeriodicalId":108112,"journal":{"name":"2023 IST-Africa Conference (IST-Africa)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IST-Africa Conference (IST-Africa)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/IST-Africa60249.2023.10187755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The lack of labelled medical data still poses as one of the biggest issues when creating Deep Learning models in the medical field. Modern data augmentation techniques like the generation of synthetic images have gained a special interest. In recent years there has been a significant improvement in GANs. StyleGAN2 achieves impressive results in the generation of natural images. StyleGAN2-ADA was created to respond to the lack of training data when training an image synthesis model, which is very frequent in the medical field. Some works used styleGAN to generate melanomas, breast cancer histological images, MR and CT images. In this work we apply, for the first time, a styleGAN2-ADA to a small dataset of abdominal MRI with 1.3k images. From the augmentation pipeline created by the authors of styleGAN2-ADA, we removed all augmentations except the geometric transformations and pixel blitting operations. We trained our network for 70 hours. Our generated dataset has a precision score of 59,33 % and a FID score of 18,14. We conclude that the styleGAN2-ADA is a viable solution to generate MRI using a small dataset.
使用StyleGAN2-ADA合成腹部MRI
在医学领域创建深度学习模型时,缺乏标记的医疗数据仍然是最大的问题之一。现代数据增强技术,如合成图像的生成,已经获得了特别的兴趣。近年来,gan有了显著的改进。StyleGAN2在生成自然图像方面取得了令人印象深刻的效果。StyleGAN2-ADA的创建是为了应对在训练图像合成模型时缺乏训练数据的问题,这在医学领域是非常常见的。一些作品使用styleGAN生成黑色素瘤、乳腺癌组织学图像、MR和CT图像。在这项工作中,我们首次将styleGAN2-ADA应用于具有1.3万张图像的腹部MRI小数据集。从styleGAN2-ADA的作者创建的增强管道中,我们删除了除了几何变换和像素比特操作之外的所有增强。我们花了70个小时训练我们的网络。我们生成的数据集的精度得分为59.33%,FID得分为18.14。我们得出结论,styleGAN2-ADA是使用小数据集生成MRI的可行解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信