{"title":"Die uvw-Sprache in der Analytischen Geometrie","authors":"Stefan Götz","doi":"10.37626/ga9783959872003.0.06","DOIUrl":null,"url":null,"abstract":"Beim Kapitel „Analytische Geometrie“ in der Sekundarstufe II werden oft abstrakte Problemstellungen ohne weiterführenden Kontext in den Blick genommen. Auf diese Weise kann die eigentliche Kraft der algebraischen Beschreibung von geometrischen Situationen den Schülerinnen und Schülern kaum vermittelt werden. Im Beitrag werden (zum Teil wohlbekannte) Fragestellungen aus der ebenen Dreiecksgeometrie präsentiert, die die Schülerinnen und Schüler zum (auch eigenständigen) Begründen mit Mitteln der Analytischen Geometrie anregen sollen. Eine standardisierte Lage eines allgemeinen Dreiecks im Koordinatensystem erweist sich dabei als fruchtbarer Ausgangspunkt für den Einsatz von Standardmethoden (!) der Analytischen Geometrie im Mathematikunterricht.","PeriodicalId":200495,"journal":{"name":"Theoretische und empirische Analysen zum geometrischen Denken","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretische und empirische Analysen zum geometrischen Denken","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37626/ga9783959872003.0.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Beim Kapitel „Analytische Geometrie“ in der Sekundarstufe II werden oft abstrakte Problemstellungen ohne weiterführenden Kontext in den Blick genommen. Auf diese Weise kann die eigentliche Kraft der algebraischen Beschreibung von geometrischen Situationen den Schülerinnen und Schülern kaum vermittelt werden. Im Beitrag werden (zum Teil wohlbekannte) Fragestellungen aus der ebenen Dreiecksgeometrie präsentiert, die die Schülerinnen und Schüler zum (auch eigenständigen) Begründen mit Mitteln der Analytischen Geometrie anregen sollen. Eine standardisierte Lage eines allgemeinen Dreiecks im Koordinatensystem erweist sich dabei als fruchtbarer Ausgangspunkt für den Einsatz von Standardmethoden (!) der Analytischen Geometrie im Mathematikunterricht.