Self-tuning measurement fusion Kalman filter for multisensor systems with companion form

Yuan Gao, Z. Deng
{"title":"Self-tuning measurement fusion Kalman filter for multisensor systems with companion form","authors":"Yuan Gao, Z. Deng","doi":"10.1109/ICCA.2010.5524122","DOIUrl":null,"url":null,"abstract":"For multisensor discrete time-invariant systems with the companion form, and unknown model parameters and noise variances, based on the recursive extended least square (RELS) and the correlation method, the strong consistent information fusion estimators of model parameters and noise variances are presented, and then by substituting them into the optimal weighted measurement fusion Kalman filter based on the autoregressive moving average (ARMA) innovation model, a self-tuning weighted measurement fusion Kalman filter is presented. Furthermore, applying the dynamic error system analysis (DESA) method, it is rigorously proved that the self-tuning fused Kalman filter converges to the optimal fused Kalman filter in a realization, so that it has asymptotically global optimality. A simulation example applied to signal processing shows its effectiveness.","PeriodicalId":155562,"journal":{"name":"IEEE ICCA 2010","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE ICCA 2010","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCA.2010.5524122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

For multisensor discrete time-invariant systems with the companion form, and unknown model parameters and noise variances, based on the recursive extended least square (RELS) and the correlation method, the strong consistent information fusion estimators of model parameters and noise variances are presented, and then by substituting them into the optimal weighted measurement fusion Kalman filter based on the autoregressive moving average (ARMA) innovation model, a self-tuning weighted measurement fusion Kalman filter is presented. Furthermore, applying the dynamic error system analysis (DESA) method, it is rigorously proved that the self-tuning fused Kalman filter converges to the optimal fused Kalman filter in a realization, so that it has asymptotically global optimality. A simulation example applied to signal processing shows its effectiveness.
伴形多传感器系统的自调谐测量融合卡尔曼滤波
针对具有伴形、模型参数和噪声方差未知的多传感器离散时不变系统,基于递推扩展最小二乘(RELS)和相关方法,提出了模型参数和噪声方差的强一致性信息融合估计,并将其代入基于自回归移动平均(ARMA)创新模型的最优加权测量融合卡尔曼滤波中。提出了一种自调谐加权测量融合卡尔曼滤波器。此外,应用动态误差系统分析(DESA)方法,严格证明了自调谐融合卡尔曼滤波器在一个实现中收敛到最优融合卡尔曼滤波器,从而具有渐近全局最优性。应用于信号处理的仿真实例表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信